• HomePage

  • Our programs

  • Publications

    Codes couleurs

    1. rouge : postdocs LMH
    2. bleu : doctorants LMH
    3. vert : membres des projets de recherches subventionnés par le LMH
    4. violet : chercheurs invités sur des programmes du LMH

     

    Avant 2015

    • F. Alouges, A. DeSimone, L. Giraldi, M. Zoppello, Purcell magneto-elastic swimmer controlled by an external magnetic field, IFAC-PapersOnLine, 50 (2017), 4120—4125.
    • F. Alouges, G. Di Fratta, Homogenization of Composite Ferromagnetic Materials. Proc. Roy. Soc. A. 471 (2015), no. 2182, 20150365.
    • F. Alouges, G. Di Fratta, B. Merlet, Liouville type results for local minimizers of the micromagnetic energy, Calc. Var. Part. Diff. Equ., 53, (2015) 525-560.
    • G.-H. Cottet, J.-M. Etancelin, F. Perignon, C. Picard, F. De Vuyst, C. Labourdette, Is GPU the future of Scientific Computing ? Annales Mathématiques Blaise Pascal, 20 no. 1 (2013), p. 75-99.
    • L. Giraldi, P. Martinon, M. Zoppello, Optimal design of the three-link Purcell swimmer, Physical Review E, 91, (2015), 023012.
    • A. Lefebvre-Lepot, B. Merlet, T.N. Nguyen, An accurate method to include lubrication forces in numerical simulations of dense Stokesian suspensions, Journal of Fluid Mechanics, 769 (2015), 369-386.
    • M. Ndjinga, T.-P.-K. Nguyen and C. Chalons, Numerical simulation of an incompressible two-fluid model, In Proceedings in Mathematics and Statistics, Vol. 78, Jürgen Fuhrmann et al, ed. Finite Volumes for Complex Applications FVCA7, pp 919-926.

     

    2015-2016

    • E. Bécache, P. Joly, M. Kachanovska and V. Vinoles, Perfectly matched layers in negative index metamaterials and plasmas, ESAIM: Proceedings and Surveys, vol. 50, pp. 113-132, 2015.
    • E. Bécache, P. Joly, M. Kachanovska, Stable Perfectly Matched Layers for a Cold Plasma in a Strong Background Magnetic Field. Journal of Computational Physics 341, (2017), 76-101. DOI : 10.1016/j.jcp.2017.03.051
    • E. Bécache, M. Kachanovska, Stable perfectly matched layers for a class of anisotropic dispersive models. Part I : Necessary and sufficient conditions of stability. ESAIM : Mathematical Modelling and Numerical Analysis (M2AN) 51:6, (2017), 2399- 2434. DOI : 10.1051/m2an/2017019
    • E. Bécache, M. Kachanovska, Stable Perfectly Matched Layers for a Class of Anisotropic Dispersive Models, Space-time Methods for Time-dependent Partial Differential Equations, Oberwolfach Report, (2017)
    • C. Caldini-Queiros, B. Després, L.-M. Imbert-Gérard, M. Kachanovska, A numerical study of the solution of X-mode equations around the hybrid resonance, Numerical Modeling of Plasmas, ESAIM : Proceedings and Surveys, DOI : 10.1051/proc/201653001, (2016)
    • M. Cassier, P. Joly, M. Kachanovska, Mathematical models for dispersive electromagnetic waves : An overview. Elsevier, Computers and Mathematics with Applications. 74:11, (2017), 2792-2830. DOI : 10.1016/j.camwa.2017.07.025
    • C. Chalons, M. Girardin, S. Kokh, An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes Comm. Comput. Phys. (CICP) 20, (2016), No. 1, 188-233.
    • M. Delbracio, P. Musé, A. Buades, and J.-M. Morel, Accelerating Monte Carlo renderers by ray histogram fusion. IPOL, 5, (2015), 55–72. DOI: 10.5201/ipol.2015.119
    • C. Denis, P. de Oliveira Castro, E. Petit,Verificarlo: checking floating point accuracy through Monte Carlo ArithmeticarXiv : 1509.01347. In Computer Arithmetic (ARITH’23), 23rd IEEE InternatinalSymposium on, Silicon Valley, Santa Clara, Ca., United States, July 2016.
    • C. Denis. Numerical Verification of Large Parallel Scientific Codes Using Monte Carlo Arithmetic.In 2nd International Workshop on High Performance Computing Simulation in Energy/Transport Domains (HPCSET 2015), ISC High Performance 2015 Conference., Frankfurt, Germany, July 2015.
    • P. Langlois, R. Nheili, C. Denis. Numerical Reproducibility : Feasibility Issues. In Pascal Urien Mohamad Badra, Azzedine Boukerche, editor, NTMS’2015 : 7th IFIP International Conference on New Technologies, Mobility and Security, number 978-1-4799-8784-9/15, page 6, Paris, France, July 2015. IEEE, IEEE COMSOC & IFIP TC6.5 WG.
    • P. Langlois, R. Nheili, C. Denis. Recovering numerical reproducibility in hydrodynamic simulations. In Computer Arithmetic (ARI- TH’23), 23rd IEEE Internatinal Symposium on, Silicon Valley, Santa Clara, Ca., United States, July 2016 (to appear). IEEE.
    • P. Langlois, R. Nheili, C. Denis. Numerical Reproducibility in open TELEMAC : A Case Study within the Tomawac Library. In 2nd International Workshop on High Performance Computing Simulation in Energy/Transport Domains (HPCSET 2015), ISC High Performance 2015 Conference., Frankfurt, Germany, July 2015.
    • R. Nheili, P. Langlois, C. Denis, Solutions to ensure the reproducibility of the digital simulation of the effect of waves on the coast. In RAIM : Rencontre Arithmétique de l’Informatique Mathématique, Rennes, France, April 2015.
    • L. Giraldi, P. Martinon, M. Zoppello, Optimal design of the three-link Purcell swimmer. Phys. Rev. E (3) 91 (2015), no. 2, 023012

     

    2016-2017

    • A. Agrachev, D. Barilari, L. Rizzi. Sub-Riemannian Curvature in Contact Geometry. J. Geom Anal. (2017) 27: 366.
    • F. Alouges, G. Di Fratta, Cell averaging two-scale convergence. Applications in periodic homogenization. Multiscale Model. Simul. 15 (2017), no. 4, 1651–1671.
    • D. Barilari, U. Boscain, E. Le Donne, M. Sigalotti. Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions. J. Dyn. Control Syst., 23 (2017) 547-575.
    • D. Barilari, L. Rizzi. On Jacobi fields and canonical connection in sub-Riemannian geometry. Arch. Math. (Brno) 53 (2017), no. 2, 77-92.
    • S. Bertoluzza, A. Decoene, L. Lacouture, S. Martin, Local error analysis of a numerical method for the Stokes equations with a singular source term. Numer. Math., published on line (2018) (hal-01230999).
    • D. Bresch, B. Desjardins, J.M. Ghidaglia, E. Grenier, M. Hillairet, Multi fluid Models Including Compressible Fluids, Springer handbook of Mathematical analysis in Mechanics of Viscous Fluids, Yoshikazu Giga and Antonin Novotny Eds., Springer, (2018) 2927-2978.
    • D. Bresch, B. Desjardins, Weak solutions via the total energy formulation and their qualitative properties - density dependent viscosities, Handbook of Mathematical analysis in Mechanics of Viscous Fluids, Yoshikazu Giga and Antonin Novotny Eds., Springer, (2018) 1547-1599.
    • D. Bresch, B. Desjardins, and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part II Existence of global $\kappa$-entropy solutions to compressible Navier-Stokes system with degenerate viscosities, J. Math. Pures Appl., 104 (2015) 801-836.
    • C. Chalons, M. Girardin, S. Kokh, An all-regime Lagrange-Projection like scheme for 2D homogeneous models for twophase flows on unstructured meshes. J. Comput. Phys. (JCP) 335, (2017), 885-904.
    • G. Di Fratta, The Newtonian Potential and the Demagnetizing Factors of the General Ellipsoid , Proc. R. Soc. A. Vol. 472. No. 2190. The Royal Society, 2016.
    • R. Conte, A. M. Grundland, Reductions of Gauss-Codazzi equations. Stud. Appl. Math. 137(3), (2016), 306–327. DOI: 10.1111/sapm.12121
    • A.M. Grundland, V. Lamothe (2016) Fluid dynamics solutions obtained from the Riemann invariant approach, Acta Appl. Math. 151 (2017), 89–119.
    • L. Rizzi. Measure contraction properties of Carnot groups. Calc. Var. 55 (2016) no 3, 55-60.

     

    2017-2018

    • F. Alouges, G. Di Fratta, Parking 3-sphere swimmer I: Energy minimizing strokes. DCDS-B 23 (2018) 1797-1817 (arxiv 1610.04767).
    • M.S. Aronna, F. Bonnans, A. Kroner, Optimal control of infinite dimensional bilinear complex systems,IFAC-PapersOnLine, 50:2872-2877, 2017.
    • M.S. Aronna, F. Bonnans, A. Kroner, Optimal control of infinite dimensional bilinear systems: Application to the heat andwave equationsMathematical programming B, 168 (2018) 717-757.
    • D. Barilari and L. Rizzi, Sub-Riemannian interpolation inequalities: ideal structures. Preprint arXiv:1705.05380. 
    • J.-D. Benamou, G. Carlier, F. Santambrogio. Variational mean field games. In : Active particles. Vol. 1. Advances in theory, models, and applications. Model. Simul. Sci. Eng. Technol. Birkhäuser/Springer, Cham, 2017, p. 141-171.
    • B. Boghosian, F. Dubois, B. Graille, P. Lallemand, M.-M. Tekitek.Curious convergence properties of lattice Boltzmann schemes for diffusion with acoustic scaling. Commun. Comput. Phys. 23.4 (2018), 1263-1278.
    • J.F. Bonnans, A. Kroner, Variational analysis for options with stochastic volatility, SIAM J. Financial Math., 9 (2018) 465-492.
    • U. Boscain, R. Chertovskih, J.-P. Gauthier, D. Prandi, A. Remizov, Cortical- inspired image reconstruction via sub-Riemannian geometry and hypoelliptic diffusion. arXiv:1801.03800
    • U. Boscain, R. Neel, L. Rizzi, Intrinsic random walk and sub-Laplacians in sub-Riemanian geometry, Advance in Math., 314, (2017) 124-184.
    • M.D. Chekroun, A. Kroner, H. Liu, Galerkin approximations of nonlinear optimal control problems in Hilbert spaces, Electronic Journal of Differential Equations, 2017(189), 1-40, 2017 (hal-01501178).
    • M.D. Chekroun, A. Kroner, H. Liu, Approximation and reduction for infinite dimensional systems: Numerical simulations, De Gruyter Radon Series on Computational and Applied Mathematics, accepted, 2018, hal-01534673
    • J. Garcke and A. Kroner, Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids, Journal of Scientific Computing, 70 (2017) 1-28.
    • V. Franceschi, D. Prandi and L. Rizzi, On the essential self-adjointness of sub-Laplacians, Preprint arXiv:1708.09626. 
    • A. Monteil, F. Santambrogio, Metric methods for heteroclinic connections. Math. Methods Appl. Sci. 41.3 (2018), 1019-1024.
    • L. Rizzi, A counterexample to gluing theorems for MCP metric measure spaces, Bull. London Math. Soc., doi : 10.1112/blms.12186 (arXiv:1711.04499).
    • L. Sacchelli and M. Sigalotti, On the Whitney extension property for con- tinuously differentiable horizontal curves in sub-Riemannian manifolds. Calc. Var. Partial Diff. Equ., 10 (2017) 1637-1661 (arXiv:1708.02795).
    • A. Toumi and F. De Vuyst, Tensor Empirical Interpolation Method for multivariate functions, submitted to AMSES (2018)
    • F. De Vuyst, A. Toumi, A mixed EIM-SVD tensor decomposition for bivariate functions. arxiv:1711.01821.