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Three meanings for “many”

Mainly three approaches to get an intuition of the size of a set:

Logical (cardinality)

Topological (dense open sets, Baire’s property)

Probabilistic or measure theoretic (sets of measure 1 or more
generally of positive measure)
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Existence using cardinality

Transcendental numbers

There exist transcendental real numbers (real numbers which are not the
roots of any rational polynomial).

Proof: there are countably many algebraic numbers and uncountably
many real numbers.

First example given by Liouville (1844):∑∞
k=1 10−k!.
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Describable numbers

Describability (loose definition)

A real number is said to be describable if there exists a finite mathematical
proposition identifying it.

Most real numbers are not describable!

Algebraic numbers, π, e, 0, 123456789101112 . . . are describable.
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Baire’s property

Baire’s property

A countable intersection of dense open sets is dense.

Theorem

Baire’s property is true for Polish spaces (separable completely metrizable
spaces).

Note the useful equivalent of Baire’s property: a countable union of
closed sets with empty interior has empty interior,

a property satisfied on an intersection of dense open sets is said to be
typical.
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Nowhere differentiable continuous functions

Weierstrass function (1872)

Let b ∈ (0, 1), a an odd positive integer and ab > 1 + 3π/2. The function:

f : x 7→
∑∞

n=1 b
n cos(anπx)

is continuous but nowhere differentiable on R.

The Baire method approach

Being nowhere differentiable is a typical property of continuous functions.

Scheme of proof

X : continuous functions on [0, 1] with the usual norm,

Define, for any n ∈ N:

Fn := {f ∈ X : ∃x ∈ [0, 1],∀y ∈ [0, 1], |f (x)− f (y)| ≤ n |x − y |} .
Fn is closed with empty interior so F =

⋃
n Fn has empty interior.

F contains the set of functions with at least one point of
differentiability.
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Léonard Cadilhac Existence, Abundance September 1, 2020 6 / 21



Nowhere differentiable continuous functions

Weierstrass function (1872)

Let b ∈ (0, 1), a an odd positive integer and ab > 1 + 3π/2. The function:

f : x 7→
∑∞

n=1 b
n cos(anπx)

is continuous but nowhere differentiable on R.

The Baire method approach

Being nowhere differentiable is a typical property of continuous functions.

Scheme of proof

X : continuous functions on [0, 1] with the usual norm,

Define, for any n ∈ N:

Fn := {f ∈ X : ∃x ∈ [0, 1],∀y ∈ [0, 1], |f (x)− f (y)| ≤ n |x − y |} .
Fn is closed with empty interior so F =

⋃
n Fn has empty interior.

F contains the set of functions with at least one point of
differentiability.
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Conclusion so far

Proofs by abundance are often less technical and give information
about the whole space. They are however not constructive.

Typical 6= Usual!
Typical behaviours can very well be pathological.
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Operators on Hilbert spaces
Let H be an (infinite) dimensional Hibert space and B(H) the space
of bounded operators on H.

B(H) can be endowed with various natural topologies such as:

I norm topology: ‖T‖op = supx∈H
‖T (x)‖
‖x‖

.

I strong operator topology:

Tn → T ⇔ ∀x ∈ H,Tn(x)→ T (x),
I strong-? operator topology:

Tn → T ⇔ ∀x ∈ H,Tn(x)→ T (x) and T ∗n (x)→ T ∗(x).

Linear dynamics on Hilbert spaces (Grivaux, Matheron, Menet 2017)

Studying typical properties of operators with respect to these topologies,
they proved the existence of operators with particular dynamical properties.

Hypercyclicity

An operator T is said to be hypercyclic if there exists x ∈ H such that{
x ,T (x),T 2(x), . . .

}
is dense in H.
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Graphs, Girth, Chromatic Number
A graph (non-oriented) G = (V (G ),E (G )) is constituted of its set of
vertices V (G ) and its set of edges E (G ) which is a symmetric subset
of V (G )× V (G ),

two vertices v1, v2 ∈ V are said to be adjacent (written v1 ∼ v2) if
either (v1, v2) belongs to E ,

Definitions

the girth of g(G ), G is the length of the shortest cycle in G ,

the chromatic number χ(G ) of G is the minimal number of colors
required to paint the vertices of G such that two adjacent vertices
never have the same color,

an independant set is a subset of V (G ) containing no two adjacent
vertices. The independance number α(G ) of G is the cardinal of its
biggest independant set.

A useful inequality: χ(G ) ≥ |V (G )|
α(G )

.
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Erdős’s construction

High girth, high chromatic number

For any integers a and b, does there exist a finite graph G with g(G ) ≥ a
and χ(G ) ≥ b?

Consider the random graph Gn,p with n vertices and where each
potential edge appears independently with probability p.

Fact: with p well-chosen, Gn,p has a non-zero probability to have a
”low” number of short cycles and a low independence number.

By removing a vertice from each short cycle of Gn,p, we end up with
no short cycles and keep a low independence number.
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Adjacency Matrix

Definition

The adjacency matrix MG of a graph G is a square matrix in which the
rows and columns are indexed by the vertices of G and defined by:

MG (v ,w) =

{
1 if v ∼ w

0 otherwise.

since we consider undirected graphs, MG is always symmetric,

Mn
G (v ,w) is equal to the number of paths of length n joining v and

w .

if MG is d-regular then the biggest eigenvalue of MG is d .
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Spectral expansion

Assume that G is a connected d-regular graph.

A spectral measure of connectedness

If λ1, . . . , λn are the eigenvalues of MG , define

λ(G ) := max
|λi |6=d

|λi | .

An element of explanation: λ(G ) measures how fast the Markov
operator on the graph converges.
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Ramanujan Graphs

Alon-Boppana theorem

When the number of vertices of G goes to infinity:

λ(G ) ≥ 2
√
d − 1− o(1)

Ramanujan graphs

Ramanujan graphs are graphs for which λ(G ) ≤ 2
√
d − 1.

Complete graphs are Ramanujan. The interesting problem is to
construct d-regular Ramanujan graphs of arbitrary size.

Expander graphs are graphs for which λ does not go to d when the
size of the graph goes to ∞.

Léonard Cadilhac Existence, Abundance September 1, 2020 13 / 21



Ramanujan Graphs

Alon-Boppana theorem

When the number of vertices of G goes to infinity:

λ(G ) ≥ 2
√
d − 1− o(1)

Ramanujan graphs

Ramanujan graphs are graphs for which λ(G ) ≤ 2
√
d − 1.

Complete graphs are Ramanujan. The interesting problem is to
construct d-regular Ramanujan graphs of arbitrary size.

Expander graphs are graphs for which λ does not go to d when the
size of the graph goes to ∞.
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A random answer

Random construction (Friedman 2003)

A random d-regular graph G is almost Ramanujan in the sense that when
its size goes to ∞, with probability 1− o(1),

λ(G ) ≤ 2
√
d − 1 + o(1).
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The explicit construction

Let Γ be a group and S a symmetric generating set of Γ.

Cayley graph

The Cayley graph G (Γ, S) is defined by

V (Γ, S) = Γ and E (Γ, S) = {(g , gs) : g ∈ Γ, s ∈ S} .

Let p and q be two prime numbers with q large enough with respect to p
and such that q is a square modulo p.

Margulis (1988), Lubotzky, Phillips, Sarnak (1988)

X p,q := G (PSL2(Fq),Sp,q) is a (p + 1)-regular Ramanujan graph.

Furthermore, X p,q has
q(q2 − 1)

2
vertices and

g(X p,q) ≥ 2 logp q.
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Scheme of Proof

eigenvalues of MG (G Ramanujan)

l
moments mk = tr(Mk

G )
l

number of paths in G
l

number of solution of a diophantine equation
l

coefficients in the q-expansion of a certain modular form

Where the name comes from

The growth of these coefficients is controled by a conjecture of
Ramanujan, the last ingredient of which was proved by Deligne (1974).
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To conclude on this example

An interpretation:

Some typical behaviours are difficult to reproduce with deterministic
formulas (in this case: determination → order → bad connectedness)

Number theory provides the required level of ”randomness” (erratic
behaviour of prime numbers) and control (deep estimates obtained
through monumental collective work) to reproduce these typical
behaviours.
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Noncommutative probability

In classical probability, the distribution of a random variable is determined
by its moments (Levy’s theorem).

Joint distribution of matrices

The joint distribution of matrices M1, . . . ,Md is defined as the collection
of their joint moments:

mi1,...,im = 1
n tr(Mi1 . . .Mim) for any m ∈ N and i1, . . . , im ∈ {1, . . . , d}m.

Freeness

In this context, the usual notion of independance is replaced by freeness.

Large random matrices

Freeness describes the behaviour of many models of large random
matrices, meaning that as the size of the matrices goes to infinity, their
moments converge to those of free operators.
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Random Unitaries and Freeness

Let U1, . . . ,Ud be random independent unitary (or permutation, or
matching) matrices in dimension n.

Haagerup, Thorbjornsen (2005), Bordenave, Collins (2019)

The matrices U1, . . . ,Ud strongly converge to free unitaries as n goes to
∞.

Consequences

For any noncommutative polynomial P the behaviour of

‖P(U1, . . . ,Ud)‖
can be predicted assymptotically.

In particular (connection to Ramanujan graphs),∥∥∥∑i≤k Ui

∥∥∥→ 2
√
d − 1 almost surely.
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Open questions

A deterministic model

Can we construct an explicit sequence of matrices which is asymptotically
strongly free?

Could it be done through number theoretic arguments?

Back to Ramanujan graphs

It is still not known whether 7-regular non-bipartite Ramanujan graphs of
arbitrary size exist.

The bipartite case is entirely solved (though not by a completely explicit
construction) by Marcus, Spielman and Srivastava (2015).
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J’aime ma Vouvou !!!
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