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Inverse problem : a contrario definition
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Introduction: inverse problems

Example: audio inverse problems
Direct problems

@ instrument synthesis

@ signal mixtures

Inverse problems

© automatique transcription

B o
@ source separation

@ audio restauration

-l
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Introduction: inverse problems

Example: MEEG inverse problem
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How to localize neuronal sources from M/EEG
747 records ?
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Introduction: inverse problems

__Introduction: inverse problems An optimization framework lterative Thresholding Numerical results Conclusion
Inverse problem: formalization

A( Y, X, a, b) =0
model  observations/measures  unknown hidden errors
signal coefficients  and noise
Explicit relation : y = A(x, a, b)
Output error: y=A(x,a)cb
Additive error : y=A(x,a)+b
Relation between x et o : {y = Ailx ) +b
Aa(x, ) =0
nonlinear model: y=A(x)+b
Linear model : y=Axob

Linear model + additive noise: y=Ax+b
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Introduction: inverse problems

__Introduction: inverse problems _An optimization framework _lterative Thresholding Numerical results_Conclusion
Well posed inverse problem

A problem is well-posed in Hadamard sense [Hadamard 1923] if the
following holds :

@ Existence: there is at least one solution.
@ Uniqueness: the set of solutions converge to a unique solution.

@ Stability: the solution depends continuously on the measurements.

@ The problem is overdetermined if there are more measurements than
sources

@ The problem is underdetermined if one looks for more sources than
measurements
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© An optimization framework
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An optimization framework

Frameworks

Mathematical framework

e ycRM
e x e RN
e Ac RMN

Optimization framework

x = argmin L(y, A, x) + P(x; A)

Q A convex loss or data term L(y, A, x) measuring the fit between the
observed mixture y and the source signal x given the mixing system
A

@ A regularization term P modeling the assumptions about the
sources,

© An hyperparameter A € R governing the balance between the data
term and the regularization term.
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An optimization framework

_[ntroduction  inverse problems An optimization framework lterative Thresholding Numerical results Conclusion

Traditional assumption: Gaussian noise

1
E(y,A,X) = EHY - AX”%

But other possible choices

@ Impulsive noise:

1
’C’(ya A,X) = E”y - AX”l

@ Poisson noise:

L(y,A,x) = Ax—y+yln (%)
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An optimization framework

__Introduction: inverse problems _An optimization framework _lterative Thresholding _Numerical results_Conclusion
The Penalty

Goal: Model the prior on the sources.

“Analysis” prior

Models the “physical” assumptions on the sources
® Minimum energy : 1||x||3 [Tikhonov, 77]
e Total variation (images) : ||Vx||1 [ROF, 92]

Sometimes, we need more flexibility: priors are not always in the
“samples” domain
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An optimization framework

_[ntroduction  inverse problems An optimization framework lterative Thresholding Numerical results Conclusion
Optimization framework with dictionary

@ A Dictionary &

@ A convex loss or data term L(y, A, &) measuring the fit between the
observed mixture y and some synthesis coefficients a, such that
x = P, given the mixing system A;

@ A regularization term P modeling the assumptions about the
sources, in the synthesis coefficient domain

@ An hyperparameter A € R governing the balance between the data
term and the regularization term.
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An optimization framework

The Dictionary

Synthesis point of view

Assume x can be written as

K
k=1
=P

with
becCVK k>N

@ Gabor
@ wavelets

@ Union of Gabor (hybrid model or Morphological Component
Analysis): x = x1 + xp = @101 + P

o Frames ([Balazs et al., 2013])
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An optimization framework

_[ntroduction  inverse problems An optimization framework lterative Thresholding Numerical results Conclusion
The penalty (returns)

Sparse approximation: key idea
x € RN admits a sparse decomposition inside a dictionnary of waveforms

{‘Pk}’szl:

X = Zakgok

ke
with AcC {1,...,K}

Given a (noisy) observation y = Ax + n, the Lasso/Basis Pursuit
Denoising [Tibshirani, 96], [Chen et al. 98] estimate reads:

1
& = argmin EHY — Ada? + Al

and
x=0&
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An optimization framework

The penalty (returns)

@ Structured sparsity via mixed norm [K,Torrésani 2008], [K, 2009]:
o Group-Lasso [Yuan, Lin 2006]

Plai A) = Alallza = A3, /2 log,ml?

o Elitist-Lasso [K,Torrésani 2008]
Plei)) = Atz = A3, (3, log.ml)’
@ Hi-Lasso [Jenatton et al. 2011], [Sprechmann et al. 2011]
Pe: ) = A((1 = v)llelzn + vllexlly)
@ sub-modular functions etc. [Bach 2012]

1
&1, &y = argmin §||y — A(®ra; + ®ra|]? + P(ag; A1) + Plao; A2)
«

and
X=®0.481 + P&
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© Iterative Thresholding
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Iterative Thresholding

Proximity operators

we suppose that ® is orthogonal. We denote by j = & Ty

LASSO solution min ||y — ®al|3 + Aljalx - .
g,m = ar8(Jg,m) (|7g,m| — A)" ; <
G-LASSO solution min ly — <Daf||% + A|e|2.1 =
« ,m = y ,m N~ =
¢ ¢ ||)’g||2
E-LASSO solution min [ly — ®a|3 + Ala|3
\ . ks
big,m = arg(Vg,m) <)7g,m| - 1+)\Lg||)7g||) | e e '
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Iterative Thresholding

(Relaxed) ISTA

o Let a® =0, L>

@ For t =0 to tax

Hd’ o] 0<pu<1, and tn, € N

altt1/2) — (0 4 > (y — qyy(t))/L
a(t+l) — S(a(t+l/2), )\/L)
L = @t (D (o (1) (1)

End For

with S a proximity operator (soft thresholding for ¢1).

Convergence proved by several authors
@ [Combettes & Wajs 05] forward-backward (proximity operators);
@ [Daubechies & al 04] Opial's fixed point theorem;
@ [Figuereido & Nowak 03] EM algorithm;

Accelerated version by [Nesterov 07], [Beck & Teboulle 09] (FISTA).
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Iterative Thresholding

@ Biased coefficients: large coefficients are shrinked [Gao, Bruce 97]

@ Lake of flexibility for structures: needs to define an adequate convex
penalty (not always simple)

Could we play directly on the thresholding step ?
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Iterative Thresholding

© Iterative Thresholding
@ Thresholding functions
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Iterative Thresholding

Thresholding rules

Definition [Antoniadis 07]

Q S(.;A) is an odd function. ( Sy (.; \) is used to denote the S(.; \)
restricted to R...)

@ S(.; ) is a shrinkage rule: 0 < S;(t;\) <t, Vt € R;.
@ S, is nondecreasing on R, and lim S(t;\) = +o0
t—+o00
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Iterative Thresholding

@ Soft [Donoho, Johnstone 94]

S(x;/\):x<1— |i>+

Hard [Donoho, Johnstone 94]
S(X; )\) = X1|X|>)\
o NonNegativeGarrote (NNGarrote) [Gao 98]

S(x; A) = x(1 — |X/\|2)+

i B
@ Firm [Gao, Bruce 97] 0 if x| < A1
ou(1- 21
S(xi Mia2) = § 22H) iy <y <
X ‘X| > A

CAD [A iadis, Fan 01 i
S [Antoniadis, Fan 01] X(]. _ ﬁ)“‘ if |X| <2

x(a—1—22
S(aa) = EB) oy < x| < an
x if |x| > a\
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Iterative Thresholding
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Iterative Thresholding

Properties of Thresholding rules

Definition: semi-convex fonction

A function f is said to be semi-convex, iff there exists ¢ such that

x = £(x) + S IxI1

is convex

We can associate a semi-convex penalty P(.; \), with ¢ <1 to any
thresholding rules. Moreover, flc is an upper-bound of §'(.; \).
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Iterative Thresholding

Convergence results

@ ISTA converges with any thresholding rules

@ Relaxed ista converges for0 < u<1-—c

e NNGarrote (c = 1/2)

I

P(x; \) = \? + asi h(' |>+/\
(i A) o VX2 +4X2 + |x|

o SCAD (c=a—1)

AX if x <\
P(x;A) = § @ox/2) ey oy < o)
a\ if x> a\
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Iterative Thresholding
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Iterative Thresholding

__Introduction: inverse problems _An optimization framework _lterative Thresholding Numerical results_Conclusion
Windowed Group-LASSO

Back to the model y = ®a + b, with ® orthonormal. Back to a simple
indexing, and for each index k, we define a neighborhood g(k).

Windowed G-Lasso [MK & BT 09], [K et al. 13]
X X X X X
X X | X X X
+ k2
X X X X X
_ XKoo XX XNk
k1,
b’m|2 x % x| x x
E (k
meg(k) XAk | X X
( L )* X X X X X
k
[ 7 k)H2 X X X X X
g ~ b FIGURE : WG-LASSO. Two overlapping

with Y= ¢ y groups: neighborhood of k; and k.

Similar thresholding rules introduced by [Cai & Silvermanss 01] for wavelet
thresholding.
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Iterative Thresholding

Neighborhood with latents variables

Can we define the WG-Lasso by using proximity operator ?

thanks to the following strategy

@ map the original coefficients into a bigger space;
define independent groups over the neighborhood of the coefficients;

apply the (group-lasso) proximity operator;

go back to the original space.

Moreover, can we use the WG-Lasso inside ISTA ?
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Iterative Thresholding

Expended operators

Definition : Expanding operator
Let « € CN. Let E: CN — CNV*N be an expanded /
operator such that -

a=(ag,...,ay)— T,
(W%a17W%a27"'aWI]\-IO[Na"'vwlNalw"aWI,\lvaN)
with w/ >0, 37, [w/[> =1 and w/ > 0 \*

proposition

E is isometrical, and then ETE = I.
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Iterative Thresholding

A left inverse

Definition : a natural left inverse

Z:(Zla 9

D : cYNcV

1 1 N N
ey 2Ny ey 2] ey 2N ) X

such that Vk, x;x =

1
7215 (1)
Wi

DE = | and then DE is a bi-orthogonal (oblique) projection.
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Iterative Thresholding

Structured shrinkage and proximity operators

proposition

Let S be the shrinkage operator of the WG-Lasso and Q = ||.||21 the
regularizer of the G-lasso. Let E be the expanded operator as previously
defined and D its left inverse. Then

S(.,A) = D o prox,g o E

+

N A . A +
=W |1- —F——=xs = k(1_~ )
S | Pml? (| 7g (k) ll2

meg(k)

S cannot be a proximity operator (it is even not a nonexpansive operator).
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Iterative Thresholding

Neighborhood as a convex prior

social sparsity convex regularizers

Let o € CN and let E be the expanded operator.
cvx windowed group lasso:

Qugi(cx Z / Z We |04€|2
LeN (k)

= ||l
cvx windowed elitist lasso:
N
QWel(a):Z Z W( ‘O‘ZI
k=1 \LeN (k)
= ||Ea||12
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Iterative Thresholding

A convex functional for social sparsity

A natural convex functional is (aka group-Lasso with overlaps [Bayram 11])

1
Fla) = Slly — ®al® + A[Ec| |2

one can look for

& = argmin F (o)
aeCN

1
= E" argmin Sly - DE"z||? + \|z||21
u

stEETz=12

o Similar functional introduced by [Peyré & Fadili 11].

@ several approach can be used to minimize F (ISTA + Douglas
Rachford, augmented lagrangian. . .)

But: this penalty acts as a discarding procedure, not a selection.
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Iterative Thresholding

G-Lasso with overlaps VS latent-G-Lasso

Instead of )
Fla)=3lly - ®al® + A|Eaz

[Jacob & al. 09] propose to minimize
- 1 ~ ~
Fla)=3lly - ET&|? + A[|é& |21
to obtain a selection of active groups.

Curse of dimension in both cases !
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Iterative Thresholding

Link between the convex functional and our shrinkages

ISTA with WG-Lasso becomes:

2X) — ED PIoXaj . ((i(k_l)))

ok = Dz

E
where k1) =271 4 —o*(y — dET2(AY)
Y

It is a proximal descent followed by an oblique projection on Im(E).

ISTA with WG-Lasso converges to a fixed point.
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Iterative Thresholding

Orthogonal social sparsity
An Orthogonal version

2 — EET ProXa i ((i(kil)»

E
where 2k~ =271 4 o (y — dETz(K7Y)
gl

orth-WG-Lasso
+

A

> Wl
J'eEN()

N 1
Oék:)/kZ; l=
i

A
WG-Lasso: &=y |1 — ——

[ X |yml?
meg(k)
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Iterative Thresholding

A family of shrinkage operators

a = S(y) is given coordinatewise:

)\ +
Qk = Yk (1 - )
|yxl

o NNGarrote / Empirical Wiener

A +
o=y (1- )
( |yl

@ Windowed Group Lasso

) n
ok = Y (1 - T )
Vg ll2

@ Empirical Persistent Wiener [Siedenburg 13]

/\ +
k=9 [1- )
( ||)’g(k)||§

@ Lasso:
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Numerical results
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Numerical results

Audio Declipping
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Numerical results

Audio inpainting: forward problem [a. adier, v. Emiya et Al

y = M'x
where
o x € RN is the unknown “clean” signal;
e y" € RM are the “reliable” sample of the observed signal
o M’ € RM*N is the matrix of the reliable support of x

we can also define the missing samples as

y" = M™Tx
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Numerical results

Reliable vs Unreliable coeff.

Original s (unknown)  Observation y

00000000010000000

00000000001000000

- 00000000000000100

Deg radation 00000000000000010

00010000000000000
00000001000000000
00000000100000000

M m __ 00000000000100000
- 00000000000010000
00000000000001000
00000000000000001

B Reliable data
B Unreliable data
B Missing data to be estimated

10000000000000000
01000000000000000
00100000000000000
00001000000000000
00000100000000000
M" =| oooo0010000000000
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Numerical results

Audio declipping: (constrained and convex) inverse

problem

For audio declipping, we can add the following constraint

1
& = argmin 7 [ly" — M"®al| + Alle||x
[e 4
st. M™ o > 4P
M™ ba < 9P
where M™" (resp. M™ ") select the positive (resp. negative) samples.

Problem: cannot be solved “efficiently” with (F)ISTA
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Numerical results

Audio declipping: (convex unconstrained) inverse problem

Let

07 X = Y G xRt Y (6

k:07%>0 k05" <0

We consider the following unconstrained convex problem:

a= argmln —||y —~ Mo+ = [GCI'F’ M7®al + P(a; \)
which is under the form

f(a) + H(a)

with f; Lipschitz-differentiable and f, semi-convex.

We can apply (relaxed)-ISTA directly !
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Numerical results

___Introduction: inverse problems An optimization framework _lterative Thresholding Numerical results Conclusion ...
Numerical results

Speech @ 16kHz Music @ 16kHz
18 11
= vt )\ = 10
S 16 X EW A x S
E L A weL e o /(/x—k/x\
o o
> > 8
O o
o o 7
E w E
£ £
X s X s
=z =z
%)) 6 %) 4 : . 4
[} [}
) o 3 _ﬁ 1
g < M %
g) g 2 S, M H 4
< ? < 1 1
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Clipping Level Clipping Level

Average SNRpss for 10 speech (left) and music (right) signals over
different clipping levels and operators. Neighborhoods extend 3 and 7
coefficients in time for speech and music signals, respectively.
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Numerical results

Numerical results: zoom on reconstructions

o

s Original
-0.2 PEW
— EW
— |

— WGL
——HT
e OMP

Amplitude

L L L L L
4230 4235 4240 4245 4250 4255
Time in ms

Declipped music signal using different operators for clip level 8P = 0.2
using the Lasso, WGL, EW, PEW, HT, and OMP operators.
Neighborhood size for WGL and PEW was 7.
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Numerical results

Original Vs clipped Vs declipped Signal

0.8, T T T T

0.6

-0.6r 1

0.8 L L L L

0 1 2 3 4 5
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Conclusion

__Introduction: inverse problems An optimization framework lterative Thresholding Numerical results_Conclusion ...
Conclusion

Take home messages

@ Use dictionary to get sparsity
@ Play on thresholding rules in ISTA

@ Define some neighborhoods for “flexible” structures

@ Some practical issues (warm start: how many iterations, \)

@ Some theoretical issues (more on convergence)
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