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Review: IP Revolution in Linear Optimization

Linear Optimization Problem (LP):

n variables in a vector x € R", linear objective c
m linear constraints Ax = b (m < n linear equations);
nonnegativity constraints x > o : means min;x; > 0.

Tx;

Simplex Algorithm [Dantzig '47]: variables (n — m) zero;
exchange vertices of feasible set (polyhedron) until optimality.
In almost all practical cases, exchange steps necessary.
Nasty examples [Klee/Minty '72]: can need up to steps.

Interior Point (IP) Algorithms: all n variables positive;
[Yudin/Nemirovski/Shor '764, Khachian '79+]: ellipsoid m.
Only K(m 4+ n)? steps necessary in worst case but impractical !



Barrier functions: IP methods made practical

Projective methods [Dikin '67], [Karmarkar '84]:
polynomial & practical.

AlsSO can approximate in worst case optimal solution to arbitrary
accuracy in polynomial time.

Modern variants:

Barrier function g(x) = — > ;109(xz;) 7 oo if x; \( 0 ensures x; > 0
if incorporated into objective:

min {ch + v8(x) : Ax = b} - with parameter

Given -, solve this only approximately; decrease ~ and iterate!

Many computing issues, success with increased computation power.



Semidefinite Optimization (SDP) versus LP

Instead of vector x now symmetric matrix X = X1 of variables;
instead of x>0 now psd. constraint X =~ O: means Aqin(X) > 0.

Again logarithmic barrier

B(X) = —logdet X = =37;10g \j(X) Moo if Apin(X) (0.

Again linear objective and m linear constraints:

min {{(C, X) : (A;, X) =b;(i=1..m), X ~ O},
where (C, X) = trace (CX) = 3; ; C;; Xy
Recall that LP can be written as

min {{(C, X) : (A;, X)) =b;(i=1..m), X >0} .



General form of conic linear optimization

Let I be a convex cone of X matrices. Conic linear program:

min {(C, X) : (A;, X) =b;(i=1..m), X € K}, barrier 77

Familiar cases:
K=N= {X =x': XZO} = N*... LP, barrier: — %, jlog X;;,
and
K= :{XzXT:X O}: S , barrier: — 3>,
In above cases, the dual cone of I,
K*={s=5":(s,X) >0 forall X €K}
coincides with K (self-duality), but in general * differs from IC.



Copositive optimization (COP), duality

A very special matrix cone:

the cone of completely positive matrices, with its dual cone
Kr = {S =S is copositive; means: x| Sx >0 if x> o};ﬁ

Well known relations:

CPNNCP+NCK". .. strict forn>5.
Primal-dual pair in (COP):
pr=inf{{(C,X): (A, X)=10b;, X € I}
and
d* =sup{bTy: C—5;yA; € K} .
Usual weak (d* < p*) and strong (d* = p*) duality results hold.
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So — why nasty 7 (and why nice 7)

Nasty aspects: geometry — while boundaries 977 and 9N are nice,
OK* is not (contains matrices of full rank, or no zero entries).

Extremal rays of K*: [Baumert '66, '67, Hildebrand '12];
interior points of K*: strict copositivity, x' Sx > 0 if x € R% \ {o}.

Extremal rays of /C: X = xx | with x € R"” . SO have rank one;
interior points of /C: [Dur/Still '08], [Dickinson '10].

Nasty aspects: complexity — decision problems
“S eIt ? or “X €. ?" are NP-hard [Dickinson/Gijben '13];

caution: not every convex optimization problem is easy |

Why nice ? For instance, because ...



Constrained fractional QPs are COPs

Consider
I¥e; ¢!
b =minl f(x) = L Xt Xty
x'Bx+2bTx 4+ 5
Applications: engineering (friction and resonance problems —
complementary eigenvalues), repair of inconsistent linear systems.

sza,xERﬁ_}.

Problem is NP-hard, many inefficient local solutions may coexist.

Theorem [Preisig '96; Amaral/B./Judice '12]: We have
Y =min{(C,X): (B,X)=1,(4,X)=0,X ek},
under mild conditions, where

o T _al . T
T | aa aA’B:[Bb
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COP formulation of the Maximum Clique Problem (MCP)

Consider an undirected graph G = (V, &) with #Y = n vertices.

Cligue § CV is maximal if § is not contained in a larger clique.
Clique §* is a maximum clique if

#S* = max{#7T : T clique in G} .

Finding the cligue number w(G) = #S8* is an NP-complete
combinatorial optimization problem, which can be formulated as
optimization problem, namely a COP (E =ee'):

Theorem [Motzkin/Straus '65, B.et al.’00]: For Qg = E—Ag
sty = min{(Qg, X): (B, X)=1, X € K}
max{y e R: Qg —yE € K*} .
Thus: a good barrier for K* would reduce MCP to line search !



General Mixed-Binary QPs and copositive programming

Theorem [Burer '09]: Any Mixed-Binary Quadratic Program
min{%xTQx—l—ch . Ax=b,x €R? , z; € {0,1},all j € B}
can (under mild conditions) be expressed as COP:
min {%(Q,X} - AX)=b, X € IC}

where X and Q are (n+ 1) x (n 4+ 1) matrices, and the size of
(A, b) is polynomial in the size of (A,b).

Special cases: continuous QP (B = 0) or binary QP — e.g., the
Maximum-Cut Problem is a COP:

max {%yTLy 'y € {—1, 1}”} :
Also QAP and graph partitioning are COPs [Povh/Rendl '07].



Linear mixed-binary problems with uncertain objective

[Natarajan/Teo/Zheng '11] consider mixed-binary LP with
stochastic objective function, only the first two moments known:

2 =sup{Emax{e'x: Ax=b, x e R} N{0,1}7} : &~ (1, D)4},

with {0,1}F = {x e R" : z; € {0,1} for all j € B} and
where € ~ (u,X)4 means: prob.distr. with support IRU}l_ and

E(©) = p, E[&&T} =3

IS in the interior of

L : L 1 y,T
Such distributions exist if
noo 2



COP formulation of optimization under uncertainty

Under the same conditions as in [Burer '09],

z* = max {trace(Z): Ax =b, (AXA"),;; = bg for all ¢ € [1:n]and

X]] = T; for all j € B, T(,LL,Z)(X? X,Z) e },
where
1 p,T x|
T X,2)=|p = 2T
x Z X |

For any optimal solution (x*, X*, Z*), construct sequence ¢;, € R?l_
such that E¢, — p and E [Ekéﬂ — ¥ as k — oo as well as

E|[max{&x:Ax=b, x e R} n{0,1}7}| — z* = trace(Z*) .

Works also if (u, 2) are not known exactly but only some bounds.



Convex quadratic underestimators over polytopes

Given indefinite Q ¢ 7, search for best convex quadratic undere-

stimator of f(x) = x'Qx over polytope P = conv (v1,...,vy).
Copositive approach [Locatelli/Schoen '10]: for V = [vq,...,Vv,]
let x = Vv with v € A" C R"_”T_ be barycentric coordinates of x

w.r.t. V, and Qp =V 'QV. Then search for gp (or rp) with
f(x) =qp(v) = viQpv > rp(v) = vy = gp(x) for all x e P
where gp(x) = x' 5x 4 2¢'x ++ with 5 € P and

= Up( Y=V'sv4+ (e +e(Vc)+ee'.
So f(x) > gp(x) for all x € P means Qp — e KC*.



Tight convex QP-underestimators by SDP-COP

Now gp(x) = rp(v) is best such underestimator of f(x) = gp(v)
if and only if volume difference (integrated convexity gap)

/AVT(QP— v dv = /A[qp(v) — rp(v)] dv is minimal.

But [ v Avdv = ﬁ(ﬂ A) holds for any A, so end up in
(E,Qp —Up) — min | ... convexity gap
= VIsv4+(W'le)e +e(Vic)+yeel
S X R" x R ... convexity
Qp — e K* ... underestimation

. lends itself naturally to relaxation of K* like + N. Here it
suffices even to require Q) p — € N [Locatelli/Schoen '10].



Positive and negative certificates in COP

Positive certificate (S =C-Y,y;A; € K*, i.e., is copositive) gives
valid lower bound in COPs by weak duality:

by <d*<p*<(C,X) for all feasible X € K.
Negative certificates/basic principle from duality: if (X,S) <0,
XeKkK = S¢K* while SeK' = X¢K.

Simpler variant of the first: violating vector v € R”, with vIiSv <0
shows S & K*, and moreover yields improving feasible direction in
global nonconvex QPs:

Theorem [B.'92]: Consider local, nonglobal solution X to a QP.
If v is viol.vector for suitable S, t > 0 (polyn.-time construction),
then f(x+4tv) < f(X) ... escape from inefficient solution X.



Copositivity certificates: preprocessing

Theorem [B.’87]: For any row i, we have

(a) If S; < 0, then v = e; is a violating vector,

(b) if S;; =0 > Szyr then v = (Sjj + 1)e; — Zje] is violating;

(c) ifS;; >0 for all j, then S € K* iff R = [S;;]; i copositive;
u= [uj]j#i violating for R = v = [0,u] € R} violating for S.

(d) if S,&'j <0< Sy for all j #14, then S € KC* iff

= [SiiSjr — SijSiklj k=i IS copositive,

W [w;lj£; violating for T =

[— Z]#z Sijwj, Szzw] c Rq_ violating for S ;
(e) ifS;; < —/SuS;j; <0, then v =,/S;;e; ++/S;;e; is violating.

Vv



After preprocessing ...

... and preceding simple sign tests, drop appropriate rows/columns;
it remains to test (possibly smaller) S for copositivity where

(a,b,c) all diagonal entries S;; > 0;
(c,d) sign of entries (off the diagonal) change in every row; and

(e) every negative entry S;; > —,/5;:5;;.

Final simplification (D any positive-definite diagonal matrix):
S is copositive if and only if

S..
S = ! (= D7 1sp™1)

is copositive. We have S/, =1 and Szfj > —1 for all 4, j.




A normal form for copositive matrices

For any symmetric matrix S define the negative sign-graph G_(S)
via the adjacency matrix: Az-j = 1 if and only if Sij <0, 1#7.

Theorem: If S is copositive with S;; > O for all 1, then there are:
a matrix N = N with no negative elements; a positive-definite
diagonal matrix D; and a loopless undirected graph G such that

S = D[I, — Ag]D+ N .
We can choose diag N = o and diag D? = diag S.

Proof. Take G = G_(S) (no other choice) and use Szfj > —1.



Easy copositivity detection
Theorem: After ordering S;; such that they increase with z, get

o %,
=10 pir-agp | TN

where r < n with equality iff the O blocks are not there.

[Pardalos/Vavasis’91]: QP with one neg.eigenvalue is NP-hard.
How about: copositivity detection with one negative entry 7

This is easy, even with < n negatives, if fairly distributed !

Theorem: Suppose S contains at most one negative element
per row. Then S € K* iff S;; > 0 and Sij > _«/Siisjj for all 1,7. In
fact, then S € 7 + N.

Extends linear-time detection for tridiagonal matrices [B.’00].



Difference-of-convex (d.c.) approach to copositivity

Given: simplex A = conv (wq,...,wy), matrix Q;

test A-copositivity of Q: is xTQx >0 for all x e A ?

D.c. decomposition: Q = Q4 — Q- with {Q4,Q_} C
Non-convex positivity cone Pos Q = {x ER?:xTQ_x< xTQ+x} .

Q is A-copositive <«— A C Pos Q,

any ve Ry A\ Pos Q is a violating vector.

Convex QP-copositivity tests approximate Pos Q: PO @

Suppose for simplicity that both Q4 and Q- are nonsingular.

Tl w;; if min;(vi)TQ4(v;) < 1, a violating
Wi Q-w;

vector in A is found; else proceed to solve following convex QP.

Rescale v, =



D.c.-based convex QP tests for copositivity

Solve convex QP over rescaled simplex
M;:min{vTQ_,_v:veconv (VI,...,V;)} . >

If uo 21, then Q is A-copositive;

else use solution to above QP for w-subdivision of A, branch.

Another convex QP works in parallel: renormalize differently,
T =1 _w;if 2 =maxv;H)TQ-(v;") > 1, a violating

v; =
VW, Qew;

vector in A is found; else proceed to solve following convex QP:

uz = min {VTQ,V 1V E conv (vf‘,...,v;l')} .

If “X < s2, then Q is A-copositive; else branch as above.



LP-based shortcut at the root

Consider convex maximization QP
,u+ = sup {XTQ_X ; XTQ_l_X <1l,x¢€ Rﬁ_} :

If 4T <1, then Q is copositive; now include convex set

B_|_={X€R7_7’|_:XTQ_|_X§1} H

into polytope P = conv (zg,...,zn) D B4.

Then
,u"' < max {XTQ_X X € P} = m_asz-TQ_zi.
1
P is easily found if p = Qyx € int Rj_ for some x € 9B . Search
for this p by LP with arbitrary f, e.g., f=e=11,...,1]":
max{fTX L Qyx>e,x > 0} .



Sufficient copositivity condition

Theorem [B./Eichfelder '12]: Given a d.c.d. Q = Q4+ — Q_,
choose an x € Rﬁr such that p = Qx has only positive entries.
If

(Q2)iix' Qyx < (Q4x)7 for all 4,
then () is copositive.

Simulation: 5000 random matrices in + N, sizes up to 200;
with the choice f = Q_e, only one (!) failed the test.

Even without using the LP, the simple choice of x = e worked
in some cases:

almost 2000 matrices satisfied min;(Qye); > O,

over 1250 of these passed above test.



Lyapunov functions for switched systems

Consider a linear ODE
x(t) = Ax(t) with x(0) =xg.

System is asymptotically stable if there is a quadratic Lyapunov
function x' Px where P is positive-definite.
This is the case if and only if AP 4+ PA is negative-definite.

Additional constraints Cx(t) > o on trajectories:
above definiteness criterion on P is too strict.

Switched systems
x(t) = A;x(t) such that C;x(t) > o, with x(0) =xg,i=1,2.
Find P such that

x'Px > 0

for all x € R" ith Cix > 0.
xT (AP 4+ PA)x < o} or all x € R"\ {o} with C;x > o



Simplicial decomposition — copositive formulation

Consider compact basis

Bi={xeR":Cix>o,|[x|1 =1},
simplicial decompositions D; = {Am} of B;,
Vi = U; ext (Ai,J) the set of all vertices of simplices in D;,
E; the set of all (undirected) edges of simplices in D;.

Then P satisfies the above stability condition if and only if P
solves the following system of strict linear inequalities for some
suitable D; [Bundfuss/Dir '09a]:
viPv > 0 for all ve ViUV,
u'Pv > 0 for all {u,v} € E1UFE»>
v (A4, P4+ PA)v < 0 forallveV,,i=1,2,
u' (4;P+PA)v < 0 forall {u,vl€E;,i=1,2.

/



EXxistence resolved — reduction to finite linear system

Any solution P to the above system provides a constructive ap-
proach to establishing asymptotic stability.

This reduction to a finite system resolves existence question of
copositive quadratic Lyapunov functions, posed as an open pro-
blem [Camlibel/Schumacher '04].

Can be also used for:

e copositivity detection [Bundfuss/Diir '08]
— challenged by [B./Eichfelder '12];

e COpositive optimization: given objective function C,
adaptive construction of the partition D; [Bundfuss/Dur 09b].



Approximation hierarchies; positivity cones

... use (direct or adaptive) discretization methods, sum-of-squares
conditions, and moment approaches.

For an arbitrary (possibly finite) subset T' C R% , define

Pos(T) :={S=8T:y'Sy>0forallyeT}.
Obvious: K* C Pos(T) ... polyhedral if T finite.
Already used: K* = Pos(B) for any base B of RT (e.g. B=A").
Interesting: K* = Pos(N") [Buchheim et al.’12].
Instead N™ finite grid, or equivalent on the standard simplex A™:

n
N?={m€Nn:Zmi=r} or g=d_|%2 d+o C A™.
1=1



Direct discretizations

First (outer) discretization [B./deKlerk'02]:

Eg:=Pos(A}) K" asd— .
Refinement [Yildirnm "11]:

d
yd = 7)08( U AZ) C gda
k=0

so also YV; \(K* as d — oo.

Both grids finite — polyhedral approximations, tractable via LP:

AL = O(n*) polynomial in n.



Adaptive outer discretizations

Hierarchy H,; of nested simplicial partitions of A", as before let
Sa = VSV and define [Bundfuss/Diir '08,'09b]

By:={S=S":diag Sp >o for all A€My},

since diag Sa = [v,' Sv;]. Again can show under mild conditions:
polyhedral B; \(K* as d — oo.

[B./Teo/Diir '12]: take (lower-level) outer approx. M D K*,
replace condition diag SA > o with S € M

(above: M = {T =T" :diag T > o}), and define

By(M) :={S=8T:85 € M for all A €Hgyf

. more general outer discretization, but no longer polyhedral if
M is not a polyhedral cone.

Partition hierarchy H,; can be chosen to adapt to objective.



Adaptive inner discretizations

Inner discretization: again based on H,;, now use as above result
Pos(A) ={S=S":5x € K*}
and
K* = Pos(A") = Naen, Pos(A)
{§=5T:8p €k* forall A€My} .
Now, employing a (lower-level) inner approx. M C K*, define
Dg(M) :={S=8T:85x € M forall A€My}

[Bundfuss/Dur '08] took M = N while [Sponsel et al."12] take
general M, eg. M =P+ N ( M =7 does not help).

Exhaustivity: Dy(M) M K* as d — oo, if H, behaves well.



Sum-of-squares approximation hierarchy

Recall Se K* if fy'Sy >0 for all y s.t. y;, = 22, some x € R".

7 Y

This is guaranteed if n-variable polynomial of degree 2(d + 2)
ps” () = (X 2Dy Sy = (3 w?)"Y Sy}

IS nonnegative for all x € R"™. Guaranteed if ’

(a) pgd) has no negative coefficients; or if

(b) pgd) is @ sum-of-squares (s.0.S.): pgd)(x) = > [fi(x)]?.

Approximation cones [Parrilo '00, '03]:

T;:=1{S = S pgd) satisfies (a)},

Sg:={5= St pgd) satisfies (b)}.



LMI representation of s.0.s. approximation cones

Again exhaustivity: Sy, Zy " K* as d — oo. Further, Z; is a
polyhedral cone while §; can be described via LMI's: w.lo.g.
)(x) 5. [hi(x)]? with homogeneous polynomials h;:

hi(x) =a/x  with x = [x"Imenn, ,

n .
the vector of monomials x™ = J] a:;'% of degree d+ 2 in x. Thus
i=1
d ~TA12 d) ~
PP = a7 =x M x,
i
where Méd) IS a symmetric matrix of large order r = (”g_ﬁgl),
which obviously must be psd. Conversely any such psd. matrix
(not unique!) gives a s.0.s. Thus §; = {S =ST: Méd) € }



Refinements of s.o0.s. hierarchy

Proceeding to a more compact LMI description, [Pefa et al.’07]
introduced
Q= {S=S5": (e'"x)¥x"Sx= ¥ x™(x'Qmx)
meN7

to arrive at Z; C Q4 C S;. Admits a recursive description, too.

Tensor description of the higher-order duals [Qy4]*, and [Z4]* pro-
vided in [Dong '10], vield outer approximation hierarchy for

These LMI descriptions allow for tractable (well, for small d) SDP
implementations in 9(n2(d+2)) variables — expensive but some-
times efficient (cf. Lovasz’ 6 for stability number). Additional
methods like warmstarting required [Engau et al.'12].



Lasserre’s moment approach

. starts with elementary observation: select T' with R4 T' = R} ;
if 1, is an arbitrary Borel measure on T, and S = S', then

x| Sx >0 for all x € R”.  implies /T(XTSX),LL(dX) >0.

Reverse implication not true for single u;

idea: require fT(XTSX) n(dx) > 0 for large enough class of u's.
Trivial: all point measures on T'. Does not help.
[Lasserre '00, '11]: One choice is T'=R",

{M ; j—i(x) = [g(x)]zexp(—eTx), g a polynomial in x} :



LMI representation of moment condition
Let I(d,n) = U_oN? with s = O(n?) elements. Then degree d
polynomial g(x) = ¢'x with X = [xX]yc7(4,), and with above
pe(dx) = [g(x)]2 exp(—e x)dx get [(x'Sx)pu(dx) = ¢ My(S)e
T

with large s x s matrix linear in S-

My(S) = | Sij Yk+m+e;+e,

[2¥}

(k. m)eI(d,n)?
where ym = [px™exp(—e' x)dx = [[;(m;)! for all m € N™.
With this choice of T' and ug's it holds that

Sek* <« MyS)epP foralld.
Gives rise to Lasserre's LMI approximation cone

La(p,T) :={S=8":My(S) e P} \ K" as d — oo.



Recent refinement of moment method

Observation [Dickinson/Povh '12]: S € K* implies even
My(S) = /T (xT Sx) exp(—e x) XX dx € I,

since it is limit of convex combinations of Zz!' with Z € RS, .

_|_
So can also take a tractable cone A with  C A C 7, a (lower-

level) outer approximation of /C, e.g. A = PNN, to obtain tighter
outer approximation of K*:

K* C Ly(p, T; A) = {8 =8T: My(S) € A} C Ly(.,T).

—

(a) d=1 (b) d=2 (C) d=3 PJC Dickinson 2012
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Survey of approximation constructions

Name symbol mode | method remarks
B./de Klerk E outer LP rational grid for A"™
Yildirim y outer LP Yy C €&, grid
Bundfuss/Diir B outer LP simplicial partition
B./Diir/Teo B(M) outer LP M D K*
Bundfuss/Dir D inner LP simplicial partition
Sponsel et al. D(M) inner LP M C K*
Parrilo et al. Z inner LP coeff pgd) > 0
Parrilo et al. S inner SDP pgd) IS a s.0.s.
Pena et al. Q inner SDP IT7CQoQcCsS
Lasserre L(p,T) outer SDP pu-moments over T
Dickinson/Povh | L(u,T; A) | outer | SDP | L(u,T; A) C L(u,T)




Compact overview of approximation constructions

mode/method LP SDP
outer E, Y, B(M) | L(u,T; A)
inner Z, D(M) S, 9

Yet to explore: vary also M, A and (T, u) with d,
cf. [Dickinson/Povh '12], [B./Dir/Teo '12].

(T, 1) = ([0, 1], A")

PJC Dickinson 2012
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