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The dams cascade problem

W1
t

D1
t

U1
t

-
-

-
-

-
-

W2
t

U2
t

XN
t

DN
t

UN
t

UN−1
t +DN−1

t

U1
t +D1

t

D2
t

X1
t

X2
t

WN
t

Optimal management of a dams cascade
hydroelectric production by means of a
Discrete Time Stochastic Optimal Control
Problem: let 1≤ i≤ N and 0≤ t ≤ T

state Xi
t: storage level

noise Wi
t: exogeneous inflows

control Ui
t: turbinated water

Di
t: spilled water surplus

→ N state and N control variables
straightforward Dynamic Programming:
untractable as soon as N > 4. . .
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Standard ways to solve the problem: approximate solving

Stochastic Programming:
model the problem using the scenario tree
pros availability of efficient algorithms from Mathematical Programming
cons difficulty to discretize the uncertainty as a tractable scenarios tree, no

strategy (decisions are attached to the nodes of the tree)

Approximate Dynamic Programming
Aggregation methods
Stochastic Dual Dynamic Programming: Bellman function

approximation by cuts that are computed iteratively
pros efficient for cascade and production - demand equilibrium type

problems up to N = 12 units
cons quite strong assumptions (convexity, linearity) over the cost and

the dynamics functions

Decomposition/coordination methods
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Main idea:
1 decompose a large scale problem into smaller subproblems we

are able to solve independently by efficient algorithms
2 coordinate the subproblems for the concatenation of their

solutions to form the initial problem solution

How to decompose the problem:
1 identify the coupling dimensions of the problem: time, space or

uncertainty
2 dualize the coupling constraints linked to the dimension over

which the problem is to be decomposed
3 split the problem into the resulting subproblems
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The SOC problem we are interested in:
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Let (λλλi)i∈{1, ...,N} be a Ft -adapted process of the coupling constraints
multipliers. Problem (P ) may read, by dualization:
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Assuming the existence of a saddle point, we can exchange the min
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Uzawa type algorithm: at step k and for a given (λλλ)(k),
1 we solve N problems (Pi) that are
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The subproblems (Pi):

are small size standard SOC problems

involve state variables that follow Markovian dynamics

their solutions should be computable by Dynamic Programming

But:

the randomness in (Pi) is generated by both W and (λλλ)(k+1)

(λλλ)(k+1) has no reason to be white nor Markovian

we can’t solve (Pi) by Dynamic Programming using the state Xi.
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The idea of DADP: replacing the multipliers by their conditional
expectations w.r.t. chosen information variables Yi

t, namely

E
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∣∣∣Yi
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)
.

→We transfer the measurability problem of a given variable ((λλλ)(k))
to the measurability issue of a chosen additional variable (Yi

t). It is
shown to be equivalent to replace the space coupling constraints by
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The information variable is of the user choice. It will have a great
influence on the efficiency of the DADP algorithm. In practice, Yi

t is a
short-memory process. Possible choices for Yi

t are:

(1) Yi
t ≡ cste: we deal with the constraint in expectation

(2) Yi
t = ϕi

t(Wt): we incorporate a noise

(3) Yi
t+1 = f̃ i

t (Yi
t, ϕ(Wt)): we incorporate a new state variable in the

problem
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(1) Yi
t ≡ cste: we deal with the constraint in expectation

The DP equation for (Pi) reads: no additional state variable
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(2) Yi
t = ϕi

t(Wt): we incorporate a noise

The DP equation for (Pi) reads: no additional state variable
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T(x) =E
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(3) Yi
t+1 = f̃ i

t (Yi
t, Wt): we add a non controled variable to the state

The DP equation for (Pi) reads: additional state variable
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Update of the conditional expectation of the multipliers w.r.t. Yi
t.

save the strategies computed at i for the fixed (λλλi
t)
(k);

use these strategies to simulate the trajectories
(Xi

t , Ui
t , Wt, Y i

t )
(k+1)
l over L scenarios;

we update the multipliers possibly by the gradient method

(λλλi
t)
(k+1) = (λλλi

t)
(k)+ρ ∑

i
θ

i
t(X

i
t , Ui

t , Wt);

estimate the conditional expectation of (λλλi
t)
(k+1) w.r.t. Yi

t by an
interpolation method
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initialisation

solve the

subproblems

simulate the

trajectories

estimate the

constraints gradient

update the conditional expectations estimation

of the multipliers w.r.t. the information variable

E
( (λλ λi t)

(k
)∣ ∣ Yi t)

(Ui
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(Xi
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Open questions

At this point, the algorithm is used to solve:

min
X, U

Ut � Ft
Xi

t+1 = f i
t (Xi

t , Ui
t , Wt)

E

( N

∑
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∑
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θ
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i
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∣∣∣∣∣Yi
t

)
= 0

but not the initial problem:

min
X, U

Ut � Ft
Xi

t+1 = f i
t (Xi

t , Ui
t , Wt)

E

( N

∑
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T

∑
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t
(
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t, Ui
t, Wi

t
))

s.t.
N

∑
i=1

θ
i
t(X

i
t, Ui

t, Wi
t) = 0

Questions:
Does the algorithm converge to the approximate solution?
Does this solution converge to the initial problem solution?
How shall we use the approximate solution to obtain a feasible
solution?
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Open questions

Does the algorithm converge to the approximate solution?
the convergence proof of Uzawa is granted, provided that:

the problem is posed in Hilbert spaces;
it exists a saddle point;

→ seem natural to place ourselves in a Hilbert space.
But: it is known (since work of Rockafellar and Wets) that such a
saddle point doesn’t exist in Hilbert spaces.

Does this solution converge to the initial problem solution?
by an epiconvergence result but epiconvergence raises technical
problems when adressed to stochastic optimization problems

How shall we use the approximate solution to obtain a feasible
solution? use a heuristic
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Dynamics:
f i
t : Xi

t+1 = min
{

Xi
t +Wi

t−Ui
t +Zi

t, xi
t+1
}
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(
Ui

t, Zi
t
)

Ft = σ
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(Wi
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1≤i≤N
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)
, Ui
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t and Z0
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{
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t+1, Ui
t
}

∑
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Information variables:

(1) Yi
t ≡ cste: we deal with the

constraint in expectation

(2) Yi
t = Wi−1

t : we incorporate the
downstream exogeneous inflows

(3) Yi
t+1 = f̃ 1

t (Yi
t, W1

t ): we mimic the
first dam storage level. We assume
f̃ 1
t to be given by an oracle and fixed

all over the iterations k
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Dynamic Programming equation:

V i
T(x) = Li

T(x)

V i
t (x,y) =

E

min
u,z


Li

t(x, u)+V i
t+1
(
f i
t
(
x,u,Wi

t,z
)
, f̃ 1

t
(
y,W1

t
))

−E((λλλi+1
t )(k)|Yi

t = y)×gi
t(x, u, Wi

t, z)

+E((λλλi
t)
(k)|Yi−1

t = y)× z




Multipliers update: gradient method

(λλλi+1
t )(k+1) =(λλλi+1

t )(k)+ρ

(
(Zi+1

t )(k+1)−gi
t((X

i
t, Ui

t, Wi
t, Zi

t)
(k))
)
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Numerical results

horizon: T = 12

The three dams share the same following discretized characteristics.
state:

Xi
t(ω) ∈ {0, 2, . . . , 80}, ∀(i, t)

control:

Ui
t ∈ {0, 8, . . . , 40}, ∀(i, t)

Z2
t ∈ {0, 2, . . . , 40} and Z3

t ∈ {0, 2, . . . , 80}, ∀t

noise:
Wi

t ∈ {0, 2, . . . , 32}, ∀(i, t)

L = 10000 equiprobable scenarios to compute the multipliers update
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Numerical results

2000 4000 6000 8000
k

1.2 ´ 106

1.4 ´ 106

1.6 ´ 106

1.8 ´ 106

2.0 ´ 106
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Numerical results

DADP(1) DADP(2) DADP(3)
loss +3.3% +2.5% +2%
run time ×2.5 ×7 ×375

 une heure

 une journée

 un mois

 une année

5 6 7 8
N

25

30

35

40

45
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Summary

1 Introductory example: the dams cascade

2 Decomposition over space and Dual Approximate DP

3 The three dams cascade toy problem

4 Conclusion and perspectives
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Conclusion:
encouraging results:

numerical convergence of the algorithm
satisfactory numerical results

the add of information seems to improve the results

first use of a dynamic information variable in DADP

the convergence is quite slow
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Perspectives:

larger dams cascade problems

improvement of the multipliers update method (conjugate
gradient, quasi-Newton. . . )

theoritical study (Uzawa convergence proof in (L∞, L1),
epiconvergence. . . )

comparison with standard methods

more complex network topologies (Y, smart grids. . . )
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Conclusion and perspectives

Thank you for your attention! =)
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