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Abstract

Game theory studies interactions between agents with specific aims,
be they rational actors, genes, or computers. This course is intended
to provide the main mathematical concepts and tools used in game
theory with a particular focus on their connections to learning and
convex optimization. The first part of the course deals with the basic
notions: value, (Nash and Wardrop) equilibria, correlated equilibria.
We will give several dynamic proofs of the minmax theorem and
describe the link with Blackwell’s approachability. We will also study
the connection with variational inequalities.



The second part will introduce no-regret properties in on-line learning
and exhibit a family of unilateral procedures satisfying this property.
When applied in a game framework we will study the consequences
in terms of convergence (value, correlated equilibria). We will also
compare discrete and continuous time approaches and their analog
in convex optimization (projected gradient, mirror descent, dual
averaging). Finally we will present the main tools of stochastic
approximation that allow to deal with random trajectories generated
by the players.



Part B

ALGORITHMS AND LEARNING



B.1 No-regret procedures (I) and applications

This section relies in part on the following :

Lectures on Dynamics in Games (2008) Université Paris 6, UPMC,
unpublished lectures notes.

Tutorial on learning (2015) Stochastic Methods in Game Theory,
IMS-NUS, Singapore.



1. No-regret procedures (I)
1.1 External regret
1.2 Internal regret
1.3 Calibrating
1.4 Extensions
1.5 Imperfect monitoring

2. Application to games
2.1 Global procedures
2.2 External consistency and Hannan’s set
2.3 Internal consistency and correlated equilibria
2.4 From calibrating to correlated equilibrium
2.5 No convergence to Nash
2.6 Weak calibration and deterministic procedure
2.7 Adaptive procedures



No-regret procedures (I)

Unilateral procedures

We consider an agent acting in discrete time and facing an unknown
environment.
At each stage n, she chooses kn in a finite set K, then observes a
reward vector Un ∈U = [−1,1]K and her payoff is the kth

n component:

ωn = Ukn
n .

We work in an adversarial framework where no assumption is done
on the reward process that is a function of the past history
hn−1 = {k1,U1, ...,kn−1,Un−1} ∈ Hn−1.
A strategy of the agent is a map σ from H = ∪+∞

m=0Hm to ∆(K) (set of
probabilities on K). σ(hn−1) is her mixed move at stage n.



1. External regret

Introduce the external regret given k ∈ K and U ∈U ⊂ RK as the
vector R(k,U) ∈ RK defined by:

R(k,U)` = U`−Uk, ` ∈ K.

The evaluation of the procedure σ is trough the sequence of external
regret vectors, where the external regret at stage n is Rn = R(kn,Un)
thus :

R`
n = U`

n−ωn, ` ∈ K.

with ωn = Ukn
n .

The average external regret vector at stage n is Rn =
1
n ∑

n
m=1 Rm, thus :

R`
n = U`

n−ωn, ` ∈ K.

This compares the actual average payoff to the payoff corresponding
to the choice of a constant component.
See Hannan, 1957 [31], Fudenberg and Levine, 1995 [28], Foster
and Vohra, 1999 [27], ...





Definition 1.1
A strategy σ satisfies external consistency (EC) (or exhibits no
external regret) if, for every process {Um} ∈U :

max
k∈K

[Rk
n]
+ −→ 0 a.s., as n→+∞

or, equivalently :

n

∑
m=1

(Uk
m−ωm)≤ o(n), ∀k ∈ K.



We prove the existence of a strategy satisfying (EC) by showing that
the negative orthant D = RK

− is approachable by the sequence of
regret {Rn}.

Lemma 1.1 (Average lemma)
∀x ∈ ∆(K),∀U ∈U :

〈Ex[R(.,U)],x〉= 0.

Proof :
One has :

Ex[R(.,U)] = ∑
k∈K

xk R(k,U) = ∑
k∈K

xk(U−Uk1) = U−〈x,U〉1

(where 1 is the K-vector of ones), thus 〈x,Ex[R(.,U)]〉= 0.



The strategy is as follows:
at stage n, if R+

n 6= 0, let σ(hn) be proportional to this vector.

Proposition 1.1
σ satisfies (EC).
Proof:
Recall that ΠD(Z) = Z−, Z = Z++Z− and 〈Z−,Z+〉= 0, ∀Z ∈ RK .
One has :

〈E(Rn+1|hn)−ΠD(Rn), Rn−ΠD(Rn)〉= 0 (1)

since 〈ΠD(Rn), Rn−ΠD(Rn)〉= 0 and using Lemma 1.1:

〈E(Rn+1|hn), Rn−ΠD(Rn)〉 = 〈E(Rn+1|hn), R+
n 〉

÷ 〈E(Rn+1|hn), σ(hn)〉
= 〈Ex[R(.,Un+1)], x〉, for x = σ(hn)
= 0

Thus by (1) the B-set condition (〈z−w,u−w〉 ≤ 0) is satisfied, so that
D is approachable, hence d(Rn,RK

−) goes to 0 and maxk∈K [R
k
n]
+ −→ 0.





2. Internal regret

The internal regret given (k,U) is the K×K matrix S(k,U) with
components: Sj`(k,U) = (U`−Uj) I{j=k}.

The evaluation at stage n is the matrix Sn = S(kn,Un) hence defined
by:

Sk`
n =

{
U`

n−Uk
n for k = kn

0 otherwise.

Average internal regret matrix:

Sk`
n =

1
n

n

∑
m=1,km=k

(U`
m−Uk

m)

Comparison for each component k, of the average payoff obtained on
the dates where k was played, to the payoff for an alternative choice `.

See e.g. Foster and Vohra (1999), Fudenberg and Levine (1999).





Definition 1.2
A strategy σ satisfies internal consistency (IC) (or exhibits no internal
regret) if, for every process {Um} ∈U and every couple k, `:

[Sk`
n ]+ −→ 0 a.s., as n→+∞



Definition 1.3
Given a K×K real matrix A with nonnegative coefficients, let Inv[A] be
the non-empty set of invariant measures for A, namely vectors
µ ∈ ∆(K) satisfying:

∑
k∈K

µ
kAk` = µ

`
∑
k∈K

A`k, ∀` ∈ K.

(The existence follows from the existence of an invariant measure for
a finite Markov chain - which is itself a consequence of the minmax
theorem).



Lemma 1.2 (Average lemma bis)
Given A ∈ RK2

+ , let µ ∈ Inv[A] then:

〈Eµ [ S(.,U)], A〉= 0, ∀U ∈U .

Proof :
〈Eµ [S(.,U)], A〉= ∑

k,`
Ak`

µ
k(U`−Uk)

and the coefficient of each U` is

∑
k∈K

µ
kAk`−µ

`
∑
k∈K

A`k = 0



To prove the existence of a strategy satisfying internal consistency,
we show that ∆ = RK×K

− is approachable by the sequence of internal
regret matrices {Sn}.
The strategy σ is as follows:
define at stage n+1, if B = S+n 6= 0, σ(hn) to be an invariant measure
of B.

Proposition 1.2
σ satisfies (IC).
Proof :
One has :

〈E(Sn+1|hn)−Π∆(Sn), Sn−Π∆(Sn)〉= 0

since again 〈Π∆(Sn), Sn−Π∆(Sn)〉= 0 and using Lemma 1.2:

〈E(Sn+1|hn), Sn−Π∆(Sn)〉 = 〈E(Sn+1|hn), S+n 〉
= 〈E(Sn+1|hn), B〉
= 〈Eµ [S(.,Un+1)], B〉, for µ = σ(hn)
= 0

Then ∆ is approachable hence maxk,`[S
k,`
n ]+ −→ 0.



3. Calibrating

One considers a sequence of random variables Xm with values in a
finite set Ω (that will be written as a basis of RΩ).

Obviously any deterministic prediction algorithm φm of Xm - where the
loss is measured by ‖Xm−φm‖ - will have a worst loss 1 and any
random predictor a loss at least 1/2 (take Xm = 1 iff φm(1)≤ 1/2).

We introduce here a predictor with values in a finite discretization V
of D = ∆(Ω) with the following interpretation: “φm = v” means that the
anticipated probability that Xm = ω (or Xω

m = 1) is vω .

Definition 1.4
φ is ε-calibrated if, for any v ∈ V:

lim
n→+∞

1
n
‖ ∑
{m≤n,φm=v}

(Xm− v)‖ ≤ ε

Dawid, 1982 [21].



This means that if the average number of times v is predicted does
not vanish, the average value of Xm on these dates is close to v.

More precisely let Bv
n the set of stages before n where v is

announced, let Nv
n be its cardinal and Xn(v) the empirical average of

Xm on these stages.

Then the condition writes :

lim
n→+∞

Nv
n

n
‖Xn(v)− v‖ ≤ ε, ∀v ∈ V.



a) From internal consistency to calibrating

Foster and Vohra,1997 [25].
Consider the online algorithm where the choice set of the forecaster
is V and the outcome given v and Xm is given by :

Uv
m = ‖Xm− v‖2

(where we use the L2 norm).
Given an internal consistent procedure φ one obtains (the outcome is
here a loss):

1
n ∑

m∈Bv
n

(Uv
m−Uw

m)≤ o(n), ∀w ∈ V,

which is:

1
n ∑

m∈Bv
n

(‖Xm− v‖2−‖Xm−w‖2)≤ o(n), ∀w ∈ V,



hence implies:

Nv
n

n
(‖Xn(v)− v‖2−‖Xn(v)−w‖2)≤ o(n), ∀w ∈ V.

In particular by chosing a point w ∈ V closest to Xn(v):

Nv
n

n
(‖Xn(v)− v‖2)≤ δ

2 +o(n)

where δ is the L2 mesh of V, from which calibration follows.



b) From calibrating to approachability

Foster and Vohra, 1997 [25].

We use calibrating to prove approachability of non excludable convex
sets.

Assume that C satisfies:

∀y ∈ Y,∃x ∈ X such that xAy ∈ C.

Consider a δ -grid of Y defined by {yv,v ∈ V}.
A stage has a label v if player 1 predicts yv and then plays a mixed
move xv such that xv Ayv ∈ C.
By using a calibrated procedure, the average move of player 2 on the
stages with label v will be δ close to yv.
By a standard martingale argument the average payoff on these
stages will then be ε close to xv Ayv for δ small enough and n large
enough.
Finally the total average payoff is a convex combination of such
amounts hence is close to C by convexity.



There is a huge literature on the relations between approachability,
no-regret and calibrating.

We recommend in particular:
Mannor and Stoltz, 2010 [53],
Abernethy, Bartlett and Hazan, 2011 [1],
Perchet, 2014 [59].



4. Extensions

1. Conditional expectation

Recall that the total regret at stage n that the agent wants to control
is:

n

∑
m=1

Uk
m−ωm, k ∈ K

where ωm = Ukm
m is the random payoff at stage m.

Let xm ∈ ∆(K) be the strategy of the player at stage m, then

E(ωm|hm−1) = 〈Um,xm〉

so that ωm−〈Um,xm〉 is a bounded martingale difference.
Hoeffding-Azuma’s concentration inequality, [5], [39], for a process
{Zn} of martingale differences with |Zn| ≤ L states that:

P{|Zn| ≥ ε} ≤ 2exp(−n ε2

2L2 ).

Hence the average difference between the payoff and its conditional
expectation is controlled.



Thus we will also study quantities of the form:

n

∑
m=1

Uk
m−〈Um,xm〉, k ∈ K.

or equivalently, because of the linearity:

n

∑
m=1
〈Um,x〉−〈Um,xm〉, x ∈ ∆(K).

This will be the notion of regret used in section B2.

Similarly the internal no-regret condition becomes:

n

∑
m=1

xi
m[U

j
m−Ui

m]≤ o(n), ∀i, j ∈ K.



2. Procedures in law

Assume that the actual move kn is not observed and define a
pseudo-process R̃ defined through the conditional expected regret:

Rn = Un−ωn1, R̃n = Un−〈Un,xn〉1

and introduce the associated strategy σ̃ .

Then consistency holds both for the pseudo and the realized
processes under σ̃ , Benaim, Hofbauer and Sorin, 2006 [8].



3. Experts and generalized consistency

External consistency can be considered as a robustness property of
σ facing a given finite family of “external” experts using procedures
φ ∈Φ:

lim
1
n
[

n

∑
m=0
〈φm− xm,Um〉]+ = 0, ∀φ ∈Φ.

The typical case corresponds to a constant choice : φ = k and Φ = K.

In general “k” will correspond to the (random) move of expert k, that
the player follows with probability xk

m at stage m.

Uk
m has to be understood as the payoff to expert k at stage m.

Internal consistency corresponds to experts adjusting their behavior
to the one of the predictor.



4. From external to internal consistency

We describe briefly two ways of getting (IC) procedures by using
combinations of (EC) procedures running on adequate datas.

1) We follow Stoltz and Lugosi, 2005 [64].

Consider a family ψ ij,(i, j) ∈M = K×K of experts and θ an algorithm
that satisfies external consistency with respect to this family.
Define σ inductively as follows.
Given some element p ∈ ∆(K), let p(ij) be the vector obtained by
moving pi from the ith to the jth component of p.
Let qn+1(p) be the distribution on ∆(K) induced by the composition of
θ at stage n+1 given the history hn, which is a probability on M and
the behavior ψ ij(hn) = p(ij) of the experts.
Assume that the map p 7→ qn+1(p) is continuous and let p̂n+1 be a
fixed point which defines σ(hn) = xn+1.



The fact that σ is an incarnation of θ implies that it performs well
facing any ψ ij hence:

[
n

∑
m=0
〈ψ ij

m− xm,Um〉]≤ o(n), ∀i, j

which is:

[
n

∑
m=0
〈p̂(ij)m− p̂m,Um〉]≤ o(n), ∀i, j

hence:

[
n

∑
m=0

p̂i
m(U

j
m−Ui

m)]≤ o(n), ∀i, j

and this is the internal consistency condition.



2) We follow Blum and Mansour, 2007 [10].

Consider K parallel algorithms {φ [k];k ∈ K} having no external regret,
that generates each a (row) vector Q[k] ∈ ∆(K) then define σ by the
invariant measure p satisfying:

p = pQ.

Given the outcome U ∈ RK , add pkU to the entry of algorithm φ [k].
Expressing the fact that φ [k] satisfies no external regret gives, at
stage m, for all j ∈ K :

[
n

∑
m=0

pk
mUj

m−〈Q[k]m,pk
mUm〉]≤ o(n)

Note that ∑k〈Q[k]m,pk
mUm〉= ∑k〈pk

mQ[k]m,Um〉= 〈pm,Um〉, hence by
summing over k, for any function L : K 7→ K, corresponding to a
perturbation σL of σ with j = L(k) the difference between the
performances of σL and σ will satisfy as well :

[
n

∑
m=0

∑
k

pk
mUL(k)

m −〈pm,Um〉]≤ o(n).

This is the internal consistency for “swap experts”.



5. Large range

Consider an even larger set of experts that are allowed (in addition to
be adapted to the past history) to choose their actions and to be
active as a function of the choice of the predictor.

Explicitly, every expert s ∈ S (finite) is characterized, at stage m, by :
- a choice function f s

m : K→ K
- an activity function τs

m : K→ [0,1].
both conditional to the past.

Given a predictor φ which prediction at stage m has a law pm the
regret facing s is :

rs
m = ∑

k
pk

mτ
s
m(k)[U

f s
m(k)

m −Uk
m]

We assume that the functions f s,τs are known by the predictor.
Then there exists a consistent procedure.

Lehrer, 2003 [48]; Cesa-Bianchi and Lugosi, 2006 [17]; Blum and
Mansour, 2007 [10].



6. Bandit framework

This is the case where, given the move k and the vector U, the only
information to the agent is the realization ω = Uk (the vector U is not
announced).
Define the pseudo regret vector at each stage n by:

Ûk
n =

ωn

σ k
n

1{kn=k}

and note that it is an unbiased estimator of the true regret.

To keep the outcome bounded one may have to consider a slight
perturbation of the strategy but the same asymptotic properties hold,
see Auer, Cesa-Bianchi, Freund and Shapire, 1995 [2], 2002 [3].

For recent advances and precise evalutions of the convergence rates,
see Bubeck and Cesa-Bianchi, 2012 [14].



5. Imperfect monitoring

1. The model

Consider a finite zero-sum two person repeated game defined by a
function G from I× J to R.
In addition there is a finite signal set S and a map M from I×J to ∆(S).
At each stage n, given a profile of moves (in, jn), a signal sn with law
M(in, jn) ∈ ∆(S) is sent to player 1 and this is his only information.

Player 2 is Nature and knows the full history.

Given y ∈ Y = ∆(J), let M(i,y) = ∑j yj M(i, j) ∈ ∆(S) be the linear
extension and denote by m(y) ∈ F = ∆(S)I = { M(i,y), i ∈ I} be the flag
induced by y.

This is the maximal information that player 1 can obtain if player 2
uses y i.i.d..



This model appears in the theory of repeated games with incompete
information, Kohlberg, 1975 [46], Mertens, Sorin and Zamir, 2015
[54], and the analysis of external regret in this framework is due to
Rustichini, 1999 [63].

Given a n-stage play, the average flag is µn ∈ F, where µr = m(jr)
(hence µn = m(yn)) and the evaluation of player 1 is d(µn) where:

d(µ) = max
x∈∆(I)

min
y∈∆(J);m(y)=µ

G(x,y).

Note that in general best replies are not pure.

The external regret is then defined by:

rn = d(µn)−Gn



2. Internal regret

Related results are in Cesa-Bianchi, Lugosi and Stoltz, 2006 [18],
Lehrer and Solan, 2015 [49], Lugosi, Mannor and Stoltz, 2008 [51],
Perchet, 2009 [56].

To specify a notion of internal consistency, we use the regularity of
the model to introduce for each ε > 0 finite discretizations
(µ[`],x[`];` ∈ L) of F and X, such that there exists δ > 0,η > 0 with:
- the set of flags is covered by balls B(µ(`),δ ), ` ∈ L,
- for any µ ∈ B(µ(`),δ ) and x ∈ B(x(`),η), x is a ε−best reply to µ for
the evaluation d(µ).



One can now introduce the vector of internal regret.

Let An[`] be the set of stages up to n where player 1 uses x[`] and
Nn[`] its cardinality.

µn[`], resp. Gn[`], are the corresponding average flag, resp. payoff.
Then let:

Rn[`] = d(µn[`])−Gn[`], ` ∈ L

and define ε−internal consistency as:

limsup
n→+∞

Nn[`]

n
[Rn[`]− ε]+→ 0, ∀` ∈ L.



Proposition 1.3 (Perchet, 2009 [56])
There exist ε−internal consistent strategies.
Proof :
Assume first that player 1 is informed of the vector of signals (indexed
by I) at each stage.
He can use a calibrated strategy associated to L such that, at a stage
with label `, he “predicts ” µ[`] and plays x[`].
Then asymptotically on these stages (if their frequency is large
enough) his prediction will be correct, his average moves closed to
x[`] hence the average regret Rn[`] small.

To reduce the analysis to the previous case, where the flag is known,
one constructs an estimator of the flag via a pertubation of the
strategy (like in the bandit framework above).

Using a specfic discretization trough Laguerre diagrams allows to get
a speed of convergence of O(n−1/3) which is optimal, Perchet, 2011
[58].



3. Approachability with random signals

The framework is as above except that G is now from I× J to RK .
G(x,y) is the multilinear extension to X = ∆(I)×Y = ∆(J).
Let

P(x,µ) = {G(x,y); m(y) = µ,y ∈ Y} ⊂ RK

be the set of outcomes compatible with the strategy x ∈ X and the flag
µ (that could be generated in expectation by some y).

Proposition 1.4 (Perchet 2011 [57])
A closed convex set C ⊂ RK is approachable (by player 1) if and only
if:

∀µ ∈ m(Y),∃ x ∈ X such that P(x,µ)⊂ C.

Note that this is exactly Blackwell’s condition in the full monitoring
case, where the signal to the agent is the move of the opponent.



Proof :
1) Assume that the condition holds.
Then for each ε > 0 one constructs as above a finite family
{µ[`],x[`], ` ∈ L} with P(x[`],µ[`])⊂ C.
A calibrated strategy associated to this set L, such that x[`] is played
when µ[`] is predicted, will induce on average, on stages with label `,
a payoff near C.
One then uses the convexity of C to deduce approchability.
2) For the converse, if there exists a signal µ0 such that

∀x ∈ X,∃y = y(x) ∈ Y,m(y) = µ0 and G(x,y) /∈ C

one can assume d(G(x,y),C)≥ δ > 0 by compactness.



Given σ strategy of Player 1 in the n-stage game let:

zn = Eσ ,µ0 [in]

be the expectation of the average move of Player 1 facing signals
with distribution µ0 at each stage.
Then, let τ be y(zn) i.i.d. and by convexity:

Eσ ,τ [d(gn,C)]≥ d(G(zn,y(zn)),C)≥ δ > 0

In addition there are convex sets that are neither approachable nor
excludable.‘
Recent results with optimal rates of convergence are in Kwon and
Perchet (2017 [47]
For extensions to games with payoff correspondence see Mannor,
Perchet and Stoltz, 2014 [52].



The natural extension is to consider games on signal’s distributions
and to check approachability at this level.

A first approach was in Kohlberg, 1975 [46] and this program has
been developed in Perchet and Quincampoix, 2014 [61], 2019 [62].

It is one of the main direction of research.



Application to games

1. Global procedures

Let G a finite game in strategic form.
There are finitely many players i = 1,2, . . . , I.
Si is the finite set of moves of player i, S = ∏i Si, and Z = ∆(S) is the
set of probabilities on S (correlated moves).
The payoff is g : S→ RI.

We will consider repeated interaction in discrete time where at each
stage the players observe the actions of their opponents.

There is an important literature on this topic.



Basic references

Cesa-Bianchi N. and G. Lugosi (2006) Prediction, Learning and
Games, Cambridge University Press.

Fudenberg D. and D.K. Levine (1998) Theory of Learning in Games,
M.I.T. Press.

Fudenberg D. and D. K. Levine (2009) Learning and equilibrium,
Annual Review of Economics, 1, 385-420.

Hart S. and A. Mas Colell (2013) Simple Adaptive Strategies: From
Regret-Matching to Uncoupled Dynamics, World Scientific
Publishing.

Young P. (1998) Theory of Learning in Games, M.I.T. Press.

see also a recent survey: Faure, Gaillard, Gaujal and Perchet, 2015
[22].



We want evaluate the joint impact on the play of the prescribed
behavior of the players (no-regret).

Since we will study the procedure from the view point of Player 1 it is
convenient to set S1 = K,X = ∆(K) (mixed moves of player 1),
L = ∏i 6=1 Si, Y = ∆(L) (correlated moves of Player 1’s opponents) and
Z = ∆(K×L) (correlated distributions).
F : S→ R denotes the payoff function of player 1 and we still denote
by F its linear extension to Z, and its bilinear extension to X×Y.



2. External consistency and Hannan’s set

Let m be the cardinality of K.
R(z) denote the m-dimensional vector of regrets for player 1 at z in Z,
defined by:

R(z) = {F(k,z−1)−F(z)}k∈K

where z−1 stands for the marginal of z on L.
(Player 1 compares her payoff using a given move k to her actual
payoff, assuming the other players’ behavior, z−1, given.)

Let us recall:

Definition 2.1 (Hannan, 1957, [31])
H1 (for Hannan set of player 1) is the set of correlated moves in Z
satisfying the no-regret condition :

H1 = {z ∈ Z : F(k,z−1)≤ F(z),∀k ∈ K}= {z ∈ Z : R(z) ∈ D = RK
−}.



The main property is that if player 1 uses a procedure with no external
regret in the on-line problem corresponding to the repeated game
where the outcome vector at stage m is {F(k, `m}k∈K}, where `m is the
profile of moves of his opponents, the empirical average distribution

zn =
1
n

n

∑
m=1

I(km,`m) ∈ Z

will converge to H.

Proposition 2.1
If Player 1 follows any (EC) procedure, the empirical distribution of
moves converges a.s. to the Hannan set H1.



Proof :
The proof is straightforward due to the linearity of the payoff.
The consistency property is:

1
n

n

∑
m=1

F(k, `m)−
1
n

n

∑
m=1

F(km, `m)≤ o(n) ∀k ∈ K

which gives :

F(k,
1
n

n

∑
m=1

`m))−F(
1
n

n

∑
m=1

(km, `m))≤ o(n) ∀k ∈ K

and this expression is:

F(k,z−1
n )−F(zn)≤ o(n) ∀k ∈ K.



Alternative proof: Blackwell, 1956 [9].

We consider an auxiliary game with vector payoffs in RM, where the
dimension is M = L+1, and the payoff φ(s) = (F(s),s−1) is the couple
of the current real payoff in the original game and of the opponent(s)
profile.
D1 is the convex set:

D1 = {(u,θ) ∈ R×∆(S−1);u≥ max
s1∈S1

F(s1,θ)}.

Theorem 2.1
D1 is approachable.
Proof :
The proof that D1 is approachable is that it is not excludable: namely,
for any θ ∈ ∆(S−1), there is some s1 ∈ S1 such that φ(s1,θ) ∈ D1.

This obviously implies the non emptiness of H1 since by
approachability d(φ n,D1) goes to 0 hence also
[maxk∈S1 F(k,z−1

n )−F(zn)]
+.



Recall that one defines similarly Hi for each player and H = ∩iHi

which is the global Hannan set.

Proposition 2.2
If each player follow some external consistent procedure, the
empirical distribution of moves converges a.s. to the Hannan set H.

Note that no coordination is required and different (EC) procedures
can be used.



3. Internal consistency and correlated equilibria

Given z = (zs)s∈S ∈ Z, introduce the family of m comparison vectors of
dimension m (testing k against j with (j,k) ∈ K2) defined by:

C(j,k)(z) = ∑
`∈L

[F(k, `)−F(j, `)]z(j,`).

(This corresponds to the change in the expected gain of Player 1 at z
when replacing move j by k.)
Remark that if one let (z | j) denote the conditional probability on L
induced by z given j ∈ K and z1 the marginal on K, then:

{C(j,k)(z)}k∈K = z1
j R((z | j))

where we recall that R((z | j)) is the vector of regrets for player 1 at
(z | j).



Definition 2.2
The set of distributions satisfying no internal regret (for Player 1) is :

C1 = {z ∈ Z;C(j,k)(z)≤ 0,∀j,k ∈ K}.

It is obviously a subset of H1 since :

∑
j
{C(j,k)(z)}k∈I = R(z).

As above, when considering the payoff vectors generated by the
moves of the opponents in the repeated game one obtains:

Proposition 2.3
If Player 1 follows some internal consistency procedure, the empirical
distribution of moves converges a.s. to the set C1.



Recall that the set of correlated equilibra distributions of the game G
is defined by

C = {z ∈ Z; ∑
`∈L

[Fi(k, `)−Fi(j, `)]z(j,`) ≤ 0, ∀j,k ∈ Si,∀i ∈ I}.

Hence one has :

Lemma 2.1
The intersection over all i ∈ I of the sets Ci is the set of correlated
equilibria distributions of the game.



Thus we obtain:

Proposition 2.4
If each player follows some internal consistency procedure, the
empirical distribution of moves converges a.s. to the set of correlated
equilibria distributions.

Note that this provides an alternative proof of existence of correlated
equilibrium through the existence of (IC) procedures.

For an alternative algorithm (but defined jointly) sharing this property,
see Hart and Mas Colell, 2001 [35] and Cahn, 2004 [15].

An extension to the compact case is achieved in Stoltz and Lugosi,
2007 [65].



4. From calibrating to correlated equilibrium

Foster and Vohra,1997 [25].
Consider the case where Player 1 is forecasting the behavior (a
profile in L) of his opponents.
Given a precision level δ , Player 1 is thus predicting points in a δ -grid
{p[v],v ∈ V} of ∆(L) and then plays a (pure) best reply to his forecast.
It is thus clear that if the forecast is calibrated the empirical
distribution of the moves of the opponents, will converge to the
forecast, on each event of the form {m;pm = p[v] ∈ ∆(L)}, hence
eventually the action chosen by Player 1, k, will be a best reply to the
frequency near p[v].
When looking at the average empirical distribution z, the conditional
distribution z|k of z given k, will correspond to a convex combination of
distributions p[v] to which k is best reply, hence k will again be an
(approximate) best reply to z|k: hence z is (approximately) in C1.
If all players use calibrated strategies the empirical average
frequency of moves converges to C.



5. No convergence to Nash

There is no uncoupled deterministic smooth dynamic that converges
to Nash equilibrium in all finite 2-person games, Hart and Mas-Colell,
2003 [37].

Similarly there are no learning process with finite memory such that
the stage behavior will converge to Nash equilibrium: Hart and
Mas-Colell, 2005 [38].

Similar results were obtained for MAD dynamics, Hofbauer and
Swinkels, 1995 [41], see also Young, 2004 [66].



6. Weak calibration and deterministic procedure

We follow Kakade and Foster, 2004 [44], 2008 [45].

Weak calibration

A general definition of calibrating for X with values in Ω (or RΩ) is,
given a family of test functions from ∆(Ω) to R, say γ ∈ Γ, a procedure
φ such that for any sequence Xm and each γ:

1
n

n

∑
m=1

γ(φm)(Xm−φm)→ 0

where the convergence is in RΩ and φ can be random (then the cv is
a.s.).

In the standard framework the prediction φ belongs to a finite set (a
grid V of ∆(Ω)) and γv is the indicator of v ∈ V.



The next result will apply for Γ, the set of Lipschitz functions and
moreover φ will be deterministic.

Let V be a simplicial subdivision of D′ ⊂ RΩ which is an
ε-neighborhood of D = ∆(Ω) (for the L1 norm).
For p ∈ D′ consider the barycentric decomposition:

p = ∑
v∈V

Wv(p)v

where Wv(p)≥ 0, ∑v Wv(p) = 1, the support of the sum is Vp, and
|p− v| ≤ ε for v ∈ Vp.
Given a forecast φ with values in D let:

µn(v) =
1
n

n

∑
m=1

Wv(φm)(Xm−φm)

be the evaluation associated to the test function Wv for each v ∈ V.



Define a map ρn on V by:

ρn(v) = v+µn(v)

and then by linear interpolation on D′ thus:

ρn(p) = p+∑
v

Wv(p)µn(v).

Claim: ρn is a continuous map from D′ to itself.
The continuity is clear and for v ∈ V one writes:

ρn(v) = v+
1
n

n

∑
m=1

Wv(φm)(Xm−φm)

= (1− 1
n

n

∑
m=1

Wv(φm))v+
1
n

n

∑
m=1

Wv(φm)(Xm + v−φm)

and in the last term the coefficient is 0 if |v−φm|> ε, which implies
that the sum is a convex combination of v and points within ε of Xm,
thus in D′, as well as the combination.
Define inductively φn+1 to be a fixed point of ρn, in particular it
satisfies:

∑
v

Wv(φn+1)µn(v) = 0.



Lemma 2.2
There exists C2 such that:

∑
v
‖µn(v)‖2 ≤ C2

n
.

Proof :
Let rn(v) = nµn(v) = ∑

n
m=1 Wv(φm)(Xm−φm) so that :

‖rn(v)‖2 = ‖rn−1(v)‖2 +Wv(φn)
2‖Xn−φn‖2 +2Wv(φn)〈Xn−φn,rn−1(v)〉

Now the sum over v ∈ V of the last term is 0 since it writes:

〈Xn−φn,∑
v

Wv(φn)rn−1(v)〉.

For the second term one has : ‖X−φ‖2 uniformly bounded by some
C2 on D′ and ∑v Wv(φn)

2 ≤ ∑v Wv(φn) = 1 hence :

∑
v
‖rn(v)‖2 ≤∑

v
‖rn−1(v)‖2 +C2 ≤ C2n

by induction.



Consider now a L Lipschitz function γ from D′ to [0,1]. Define an
approximation γ̂ through:

γ̂(p) = ∑
v

Wv(p)γ(v)

and note that |γ̂(p)− γ(p)| ≤ εL.
The evaluation associated to γ and the above forecast φ is:

µn[γ] =
1
n

n

∑
m=1

γ(φm)(Xm−φm).

Then |µn[γ]| ≤ |µn[γ̂]|+ εC1L, whith |X−φ | ≤ C1 on D′. But :

|µn[γ̂]|= |
1
n

n

∑
m=1

∑
v

Wv(φm)γ(v)(Xm−φm)|= |∑
v

γ(v)µn(v)|

≤∑
v
|µn(v)| ≤

√
(#V)∑

v
‖µn(v)‖2.



Finally one obtains:

|µn[γ]| ≤
√

C2#V
n

+ εC1L,

hence given any positive η , choose ε small enough and then let n
greater than some N(ε) to get a bound of η .

To avoid forecasting in D′ \D one projects φ on D by ΠD which is
Lipschitz and satisfies ‖ΠD(p)−p‖ ≤ (#Ω)ε.



Application to random calibration

Let V a simplicial subdivision of ∆(Ω) and recall the asociated
barycentric representation: p = ∑v Wv(p)v.

Given a deterministic forecast adapted to L Lipschitz functions as
above, consider the random forecast having values in V with law
defined by the splitting above.

Then the evaluation is in expectation:

Em = ∑
v

Wv(φm)(Xm− v),

which is within ε of:

E′m = ∑
v

Wv(φm)(Xm−φm)

since Wv(φm) = 0 if ‖φm− v‖ exceeds ε.
When summing the evaluations one obtains a finite sum (v ∈ V) of
evaluations adapted each to φ and a Lipschitz test function Wv.



Convergence to Nash equilibria

The random variable is the joint profile sm ∈ S of the players.
Each prediction using a deterministic procedure is a mixed profile say
xm ∈ ∆(S).

Given a smooth (ε-)best reply function for each player, this defines a
profile of mixed strategies ym ∈∏i ∆(Si).

Then one shows that with probability one:
Believing Nash:

1
n

n

∑
m=1

d(xm,NEε)→ 0

Playing Nash:
1
n

n

∑
m=1

d(ym,NEε)→ 0

Merging:

1
n

n

∑
m=1

d(xm,ym)→ 0



The previous convergence result implies that on the stages where xm

is predicted (and where using a martingale argument ym is realized)
the average distribution is also xm, hence the fixed point and the
equilibrium condition.

Convergence to Nash equilibria is obtained by requiring all the
players to use the same calibrated algorithm φ .

Recent extensions are presented in Foster and Hart, 2018 [23].



7. Adaptive procedures
We consider here (random) processes corresponding to adaptive
behavior in repeated interactions.
There are at least three different levels of information.

1) Knowing the fact that one plays a game; the payoff function
G1 : ∏i Si→ R is known (hence Player 1 knows both K = S1 and
L = S−1).
After each stage n the opponent ’s move s−1

n is announced; Player 1
deduces the stage vector outcome Un = G1(.,s−1

n ).
One can then speak about “learning" in terms of predicting, after
each observation, the opponent’s behavior.
Note nevertheless that if the payoff of the opponent is unknown it is
difficult to predict anything on a rational basis, except in special
situations like facing the same random event: ”strategic
experimentation”.

ADAPTIVE/LEARNING PROCEDURE



2) Here the information is simply the vector Un (one may face a
sequence of different opponents in terms of strategies or payoffs) the
only “stationarity " in the model is the fact that the outcome are
bounded and the set of moves K is given.

One uses also this approach if the payoff is not linear with respect to
the opponents’ move - so that empirical distribution of moves has no
interpretation).

The knowledge of the move played (s1
n) may be needed (in no-regret

procedures) or not (fictitious play); the explanation of this fact is
through the "procedure in law" properties.

NO REGRET/COMPARISON PROCEDURE



3) Only the payoff gn = G1(sn) ( the component kn of Un) is announced.

A first kind of procedure is “payoff-based" using the knowledge of the
move s1

n.
REINFORCEMENT PROCEDURE

A second kind constructs from the observation gn (and the move
played s1

n and its law) a pseudo vector Ũn and applies the previous
procedure 2).
PSEUDO COMPARISON PROCEDURE



In most of the procedures the behavior of the player depends upon a
parameter z ∈ Z.
At stage n, the state is zn−1 and the process is defined by two
functions:
a decision map σ from Z to ∆(K) (the simplex on K) defining the law
xn of the current action kn as a function of the parameter:

xn = σ(zn−1)

and given the observation αn of the player, after the play at stage n,
an updating rule for the state variable:

zn = Φn(zn−1,αn).

Remark
Note that the decision map is stationary but that the updating rule
may depend upon the stage.



Example 1: Fictious Play

The state space is usually the empirical distribution of actions of the
opponents zn = {zj

n} with zj
n = sj

n if αn = s−1
n , but one can as well take

αn = Un, the vector payoff, then zn = Un is the average vector payoff
thus satisfies:

zn =
(n−1)zn−1 +Un

n
and

σ(z) ∈ br(z) or σ(z) = brε(z),

with
br(z) = {x ∈ ∆(K);〈z,x− y〉 ≥ 0,∀y ∈ ∆(K)}

being the payoff-based (rather than strategy-based) best reply.



Example 2: Potential regret dynamics

Here αn = Un and
Rn = Un−gn1

is the “regret vector" at stage n. The updating rule zn = Φn(zn−1,αn) is
simply

zn = Rn.

Choose P to be a “potential function" for the negative orthant D = RK
−

and for z /∈ D let σ(z) be proportional to ∇P(z), Hart and Mas-Colell,
2003 [36], Cesa-Bianchi and Lugosi, 2003 [16].



Example 3: Cumulative proportional reinforcement

The observation αn is only the stage payoff gn (we assume all payoffs
≥ 1).
The updating rule is

zk
n = zk

n−1 +gn I{kn=k}

and the decision map is σ(z) proportional to the vector z.

There is an important literature on such reinforcement dynamics, see
e.g. Beggs, 2005 [6], Börgers and Sarin, 1997 [11], Hopkins, 2002
[42], Hopkins and Posch, 2005 [43], Pemantle, 2007 [55], and the
references therein.



Note that these three procedures can be written as:

zn =
(n−1)zn−1 + vn

n
or zn− zn−1 =

1
n
[vn− zn−1].

where vn is a random variable depending on the actions ` of the
opponents and on the action kn having distribution xn = σ(zn−1). Write:

vn = Exn(vn|z1, ...,zn−1)+ [vn−Exn(vn|z1, ...,zn−1)]

and define:
S(zn−1) = Co{Exn(vn|z1, ...,zn−1);` ∈ L}

where Co stands for the convex hull and:

Wn = vn−Exn(vn|z1, ...,zn−1).

Thus:
zn− zn−1 ∈

1
n
[S(zn−1)− zn−1 +Wn].



The related differential inclusion is:

ż ∈ S(z)− z (2)

and the process zn is a Discrete Stochastic Approximation of (2).

For further results with explicit applications of this procedure see e.g.
Hofbauer and Sandholm, 2002 [40], Leslie and Collins, 2005 [50],
Benaïm, Hofbauer and Sorin, 2006 [8], Cominetti, Melo and Sorin,
2010 [19], Coucheney, Gaujal and Mertikopoulos, 2015 [20], Bravo,
2015 [12], Bravo and Faure, 2015 [13]...

In conclusion, a large class of adaptive dynamics can be expressed
in discrete time as a random difference equation with vanishing step
size.
Information on the asymptotic behavior can then be obtained by
studying the continuous time deterministic analog obtained as above.
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