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What is unsupervised learning? R pimisaton

Part Il
In unsupervised learning, we are given a matrix of data points

X = [x1,...,Xm], with x; € R"; we wish to learn some condensed
information from it. Unsupervised earning
Examples:

» Find one or several direction of maximal variance.
» Find a low-rank approximation or other structured approximation.

» Find correlations or some other statistical information (e.g.,
graphical model).

» Find clusters of data points.



What is supervised learning? e Cpimiaton
Part Il
In supervised learning, the data points are associated with “side”
information that can “guide” (supervise) the learning process.

Supervised learning

» In linear regression, each data point x; is associated with a real
number y; (the “response”); the goal of learning is to fit the
response vector to (say, linear) function of the data points, e.g.
yi~ w'x;.

» |n classification, the side information is a Boolean “label”
(typically y; = +1); the goal is to find a set of coefficients such
that the sign of a linear function w”x; matches the values y;.

» In structured output models, the side information is a more
complex structure, such a tree.



Popular loss functions R pimisaton

Part Il
» Squared loss: (for linear least-squares regression)

L(z,y) = |z -yl

Supervised learning

» Hinge loss: (for SVMs)

L(z,y) = max(0,1 - yz)

i=1

» Logistic loss: (for logistic regression)

m
L(z,y)=— log(1+ e ).
i=1
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Generic sparse learning problem R pimisaton

Part Il

Optimization problem with cardinality penalty:

min L(X"w) + A||wllo.
w

Data: X € R™"™. Basies
Loss function L is convex.

Cardinality function ||w||o := |{j : w; # 0}] is non-convex.

A is a penalty parameter allowing to control sparsity.

v

v

v

v

v

Arises in many applications, including (but not limited to) machine
learning.

v

Computationally intractable.



Classical approach R pimisaton

Part Il
A now classical approach is to replace the cardinality function with an
li-norm:
min L(X"w) + A||wl|s.
w

Basics

Pros:
» Problem becomes convex, tractable.
» Often works very well in practice.
» Many “recovery” results available.
Cons: may not work!



RGCOVGry Robust and Sparse

Optimization
) Part Il
A special case ar

Consider the sparse learning problem

min [wllo : X 'w=y.
X

Assume optimal point is unique, let w(® be the optimal point.

Recovery

Now solve /;-norm approximation

w = argmin [[w]l; : X'w=y.
X

Since w(") is feasible, we have X (w!" — w(®) = 0.

Facts: (see [2])
» Set of directions that decrease the norm from w(") form a cone.

» If the nullspace of X" does not intersect the cone, then
w — (0



. Robust and §
Mean width ° Optmization

Part Il

Let S C R" be a convex set, with support function

Sc(d) = SUp dTX. Unsupervised learning

xes Supervised learning

Then S¢(d) + Sc(—d) measures “width along direction d”.

Basics
Recovery
Safe Feature Elimination

Motivation
Example
SAFE
Relaxatior
Algorithms
Examples

Variants

Sparse graphical models

Penalized
maximum-likelihood

Mean width: with S"~" be the unit Euclidean ball in R, -

Robust low-rank LP

UJ(C) = Eu SC(U) = / Sc(u)dU. Low-rank LASSO

uesn—1



Gordon’s escape theorem R pimisaton

Part Il
When does a random subspace A € R” intersect a convex cone C
only at the origin?

Recovery

Theorem: (Gordon, 1988) If
codim(A) > n-w(CNS" "2,
then with high probability: .A N C = {0}.



Robust and Sparse

Bounding mean width Optimization
A duality approach Part i

E, max u'x
xeC, ||x||=1

w(Cns™)

E, max u'x
XEC, HXH§1 Recovery

= E, min [[u—v],
veC*

IN

where C* is the polar cone:

c* ::{v cviu<oforeveryue C}.

Name of the game is to choose an appropriate v.



Recovery rates

Fact: ([2]) Assume that the solution to cardinality problem with n
variables and m constraints:

w® =argmin |wlo : X'w=y
X
is unique and has sparsity s. Using the /;-norm approximation
w = argmin ||wll; : X"w=y,
X

the condition

m223logg+%s

guarantees that with high probability, w(") = w(©.

Similar results hold for a variety of norms (not just /).

Robust and Sparse
Optimization
Part Il

Recovery



ici Robust and §|
Basic idea ® Opimization
LASSO and its dual Part i

“Square-root” LASSO:
min IXTw — yll2 + Al|wl]1.

with X™ = [a1,...,a,) € R™", y € R”,and A > 0 are given. (Each
a; € R" corresponds to a variable in w, i.e. a “feature”.) Sate Feature Elimination

Dual:
max 0Ty - |16l2<1, lalo| <X, i=1,....n

From optimality conditions, if at optimum in the dual the i-constraint is
not active:
lal 0] < A

then w; = 0 at optimum in the primal.



Robust and Sparse

BaSIC ldea Optimization
Safe Feature Elimination (SAFE) Part

From optimality:
lal0] < x = w; =0.
Since the dual problem involves the constraint ||6]|2 < 1, the condition

Vo, 0]l2<1 : |al0] <

Safe Feature Elimination

ensures that w; = 0 at optimum.

SAFE condition:
||a,~|\2 < A=W, = 0.



Advanced SAFE tests e Cpimiaton
Part Il
Test can be strenghtened:
» Exploit optimal solution to problem for a higher value of .
» Use idea within the loop of a coordinate-descent (CD) algorithm.
» Allows to eliminate variables on the go.

Safe Feature Elimination

Test is cheap:
» SAFE test costs as much as one iteration of gradient or CD
method.
» Typically involves matrix-vector multiply X" w, with w a sparse
vector.



Robust and Sparse

EXperIment Optimization

Part Il
Data: KDD 2010b, 30M features, 20M documents. Target cardinality
is 50.

Safe Feature Elimination

3000

Iterations

w0
MAas

» Applying SAFE in the loop of a coordinate-descent algorithm.

» Graph shows number of features involved to attain a given
sparsity level.
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Robust and Sparse

Principal Component Analysis Optimization

IIIW l '

Motivation

Votes of US Senators, 2002-2004. The plot is impossible to read. ..

» Can we project data on a lower dimensional subspace?
» If so, how should we choose a projection?



Robust and Sparse

Principal Component Analysis Optimization

. Part Il
Overview

Principal Component Analysis (PCA) originated in psychometrics in
the 1930’s. It is now widely used in

» Exploratory data analysis.
» Simulation.
» Visualization.

Motivation

Application fields include

v

Finance, marketing, economics.

v

Biology, medecine.

v

Engineering design, signal compression and image processing.
Search engines, data mining.

v



Solution principles R pimisaton

Part Il
PCA finds “principal components” (PCs), i.e. orthogonal directions of
maximal variance.

» PCs are computed via EVD of covariance matrix.
» Can be interpreted as a “factor model” of original data matrix.

Motivation



Variance maximization problem R pimisaton

Definition Part II

Let us normalize the direction in a way that does not favor any
direction.

Variance maximization problem: Motivation

max var(x) : |[x|l2 =1.
X

A non-convex problem!

Solution is easy to obtain via the eigenvalue decomposition (EVD) of
S, or via the SVD of centered data matrix Ac.



Robust and Sparse

Variance maximization problem Optimization

. Part Il
Solution

Variance maximization problem:
max x'Sx : ||x|l2 = 1.
X

Assume the EVD of Sis given:

P
T
S= E )\iuiui ’ Motivation
i=1

with Ay > ... A\p,and U = [uy,.. ., Up] is orthogonal (U™ U = /). Then

arg max x'Sx=u,
x:lx[l2=1

where uy is any eigenvector of S that corresponds to the largest
eigenvalue \¢ of S.



Robust and Sparse

Variance maximization problem Optimization

Example: US Senators voting data Partl

Overview
Unsupervised learning
W%%?Wﬁ_ Supervised learning
RO e
—cy Sparse supervised
learning
Basics
[ —— Recovery
oy Safe Feature Elimination
Sparse PCA
Motivation
Example
SAFE
Relaxation

BAUCS ——— iy S—
LAHDRED
VENEN

Algorithms
Examples
Variants

Sparse Covariance
Selection
Sparse graphical models

Penalized
maximum-likelihood

Example

Robust Optimization

Robust low-rank LP
praptianen random dredion Feojedtisn on dredtion of maxral e Low-rank LASSO

StatNews

References
Projection of US Senate voting data on random direction (left panel) and direction of maximal variance (right panel). The latter
reveals party structure (party affiliations added after the fact). Note also the much higher range of values it provides.
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Robust and Sparse

Finding orthogonal directions Optimization

A deflation method Part i

Once we’ve found a direction with high variance, can we repeat the
process and find other ones?

Deflation method:

» Project data points on the subspace orthogonal to the direction
we found.

» Fin a direction of maximal variance for projected data. Maivation

The process stops after p steps (p is the dimension of the whole
space), but can be stopped earlier (to find only k directions, with
k << p).



Robust and Sparse

Finding orthogonal directions Optimization

Part Il
Result

It turns out that the direction that solves
max var(x) : x"u; =0
X

is Uz, an eigenvector corresponding to the second-to-largest
eigenvalue.

Motivation

After k steps of the deflation process, the directions returned are
U, ..., Uk.



Factor models e

Part Il

PCA allows to build a low-rank approximation to the data matrix:

k
A= Z 0','U,'V,'T
i=1
Each v; is a particular factor, and u;’s contain scalings.

Motivation



Robust and Sparse

Example Optimization

PCA of market data Partll

» Plot shows the eigenvalues of

‘ —— — covariance matrix in

T decreasing order.

o » First ten components explain

& 80% of the variance.

» Largest magnitude of

o eigenvector for 1st component =™

o’ correspond to financial sector

" (FABC, FTU, MER, AIG, MS).

o 10 2 3 w0 EJ ® 7 o
e o snguar vae

Data: Daily log-returns of 77 Fortune 500 companies,
1/2/2007—12/31/2008.



Sparse PCA: motivation R pimisaton
Part Il

One of the issues with PCA is that it does not yield principal directions
that are easily interpretable:

» The principal directions are really combinations of all the relevant
features (say, assets).

» Hence we cannot interpret them easily.

» The previous thresholding approach (select features with large
components, zero out the others) can lead to much degraded
explained variance. Example



Sparse PCA R pimisaton

Problem definition Part Il

Modify the variance maximization problem:
max x’ Sx — ACard(x) : ||x|l2 =1,
X

where penalty parameter A > 0 is given, and Card(x) is the
cardinality (number of non-zero elements) in x.

Example

The problem is hard but can be approximated via convex relaxation.



Robust and Sparse

Safe feature elimination Optimization
Part Il

Express Sas S = R'R, with R = [, ..., r] (each r; corresponds to
one feature).

Theorem (Safe feature elimination [3])
We have

max x’ Sx — A Card(x) = , max Z max(0 - ).

X |Ixll2=1 “zllz=1

SAFE



SAFE i
Part Il
Corollary
IfX > ||ri||3 = Si, we can safely remove the i-th feature (row/column of
S).

» The presence of the penalty parameter allows to prune out
dimensions in the problem.
» In practice, we want X high as to allow better interpretability.

» Hence, interpretability requirement makes the problem easier in
SAFE
some sense!



Relaxation for sparse PCA R pimisaton

Step 1: /i-norm bound Part Il

Sparse PCA problem:
#(A) :=max x" Sx — ACard(x) : |x[}2 =1,

First recall Cauchy-Schwartz inequality:

Ix]l+ < v/Card(x)]|x]l2,

hence we have the upper bound

Relaxation

$(X) < $(X) := max x"Sx = A||x|[§ = [Ix]2 = 1.



Robust and Sparse

Relaxation for sparse PCA Optimization

Step 2: lifting and rank relaxation Partl

Next we rewrite problem in terms of (PSD, rank-one) X := xx:

6=max TrSX — A X[ : X =0, TrX =1, Rank(X)=1.

Drop the rank constraint , and get the upper bound

X< H(N) = max T SX = A|X[ly : X =0, Trx=1.

» Upper bound is a semidefinite program (SDP). Relaxation
» In practice, X is found to be (close to) rank-one at optimum.



Sparse PCA Algonthms Robust and Sparse

Optimization
Part Il

» The Sparse PCA problem remains challenging due to the huge
number of variables.

Second-order methods become quickly impractical as a result.
SAFE technique often allows huge reduction in problem size.
Dual block-coordinate methods are efficient in this case [9].
Still area of active research. (Like SVD in the 70’s-90’s. . .)

v

v

v

v

Algorithms



Robust and Sparse

Example 1 Optimization

Sparse PCA of New York Times headlines Partl

Data: NYTtimes text collection contains 300, 000 articles and has a
dictionary of 102, 660 unique words.

The variance of the features (words) decreases very fast:

10 Examples

Sorted variances of 102,660 words in NYTimes data.

With a target number of words less than 10, SAFE allows to reduce
the number of features from n ~ 100, 000 to n = 500.



Robust and Sparse

Example Optimization

Sparse PCA of New York Times headlines Partll

Words associated with the top 5 sparse principal components in NYTimes

1st PC 2nd PC 3rd PC 4th PC 5th PC

(6 words) (5 words) (5 words) (4 words) (4 words)
million point official president school
percent play government campaign program
business team united_states bush children
company season u-s administration student
market game attack

companies

Examples

Note: the algorithm found those terms without any information on the
subject headings of the corresponding articles (unsupervised
problem).



NYT Dataset e Cpimiaton
Comparison with thresholded PCA Partl
Thresholded PCA involves simply thresholding the principal
components.

k=2 k=3 k=9 k=14
even even even would

like like we new
states like even
now we
this like
will now
united this
states will
if united Examples
states
world
o)
some

if

1st PC from Thresholded PCA for various cardinality k. The results contain a
lot of non-informative words.



Robust PCA e ontmizaton
Part Il

PCA is based on the assumption that the data matrix can be
(approximately) written as a low-rank matrix:

A=LR",

with L € RP*% R e R™* with k << m, p.

4

Robust PCA [1] assumes that A has a “low-rank plus sparse’

structure:
A=N+ LR Variants

where “noise” matrix N is sparse (has many zero entries).

How do we discover N, L, R based on A?



Robust PCA model e

Part Il
In robust PCA, we solve the convex problem

min [[A — N[ + X[|N];

where || - ||« is the so-called nuclear norm (sum of singular values) of
its matrix argument. At optimum, A — N has usually low-rank.

Variants

Motivation: the nuclear norm is akin to the /;-norm of the vector of
singular values, and /;-norm minimization encourages sparsity of its
argument.



CVX syntax R pimisaton
Part Il
Here is a matlab snippet that solves a robust PCA problem via CVX,
given integers n, m, a n x m matrix A and non-negative scalar \ exist

in the workspace:

cvx_begin

variable X (n,m);

minimize ( norm_nuc (A-X)+ lambda*norm(X(:),1))
cvx_end

Variants

Not the use of norm_nuc, which stands for the nuclear norm.
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Robust and Sparse

Motivation Optimization

Part Il
We'd like to draw a graph that describes the links between the
features (e.g., words).

» Edges in the graph should exist when some strong, natural metric
of similarity exist between features.
» For better interpretability, a sparse graph is desirable.

» Various motivations: portfolio optimization (with sparse risk term),
clustering, etc.

Sparse graphical models

Here we focus on exploring conditional independence within features.



Gaussian assumption R pimisaton
Part Il
Let us assume that the data points are zero-mean, and follow a
multi-variate Gaussian distribution: x ~ A/(0,X),withZ ap x p

covariance matrix. Assume X is positive definite.

Gaussian probability density function:

PO = 3 gorypre ©P(1/2XTE '),

Sparse graphical models

where X := ¥~ is the precision matrix.



Conditional independence R pimisaton
Part Il
The pair of random variables Xx;, x; are conditionally independent if,

for xi fixed (k # i, j), the density can be factored:

p(x) = pi(x)pi(X;)

where p;, p; depend also on the other variables.

» Interpretation: if all the other variables are fixed then x;, x; are
independent.

Sparse graphical models

» Example: Gray hair and shoe size are independent, conditioned
on age.



Robust and Sparse

Conditional independence Optimization

C.I. and the precision matrix Part Il

Theorem (C.I. for Gaussian RVs)

The variables x;, x; are conditionally independent if and only if the i, j
element of the precision matrix is zero:

(£7);=0.

Proof.
The coefficient of x;x; in log p(x) is (Z~");. W

Sparse graphical models



Sparse precision matrix estimation

Let us encourage sparsity of the precision matrix in the
maximum-likelihood problem:

max logdet X — Tr SX — X|| X]}1,

with || X1 := >
» The above provides an invertible result, even if S is not
positive-definite.

» The problem is convex, and can be solved in a large-scale setting
by optimizing over column/rows alternatively.

./ 1Xjl, and X > 0 a parameter.

Robust and Sparse
Optimization
Part Il

Penalized
maximum-likelihood



Dual

Sparse precision matrix estimation:

max logdet X — Tr SX — X|| X||1.

Dual:
mJn —logdet(S+ U) : ||U]|o < A.

Block-coordinate descent: Minimize over one column/row of U
cyclically. Each step is a QP.

Robust and Sparse
Optimization
Part Il

Penalized
maximum-likelihood



Robust and Sparse
Example Optimization

Part Il

Data: Interest rates

Recovery
Safe Feature Elimination

Motivation
Example
SAFE

Rel:

Variants

Using covariance matrix (A = 0). Using A = 0.1.

graphical models
The original precision matrix is dense, but the sparse version reveals maximum-ikeihood
the maturity structure. Erample




Example
Data: US Senate voting, 2002-2004

D) G
®®

U

®

000006

Again the sparse version reveals information, here political blocks

within each party.
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Rob d S
Low-rank LP  Optmization
Part Il
Consider a linear programming problem in n variables with m
constraints:

min ¢'x : Ax < b,
X

with A € R™", b € R™, and such that

» Many different problem instances involving the same matrix A
have to be solved.

» The matrix A is close to low-rank.

» Clearly, we can approximate A with a low-rank matrix A, once,
and exploit the low-rank structure to solve many instances of the
LP fast.

» In doing so, we cannot guarantee that the solutions to the
approximated LP are even feasible for the original problem.

Robust low-rank LP



Robust and Sparse

Approach: robust low-rank LP Optimization
Part Il
For the LP

min ¢'x : Ax < b,
X
with many instances of b, c:

» Invest in finding a low-rank approximation A, to the data matrix A,
and estimate € := ||A — Ay

» Solve the robust counterpart

min c'x : (Ar+A)x<b VA, |A<e
X

» Robust counterpart can be written as SOCP
min c'x i Ax+t<b, t>|x|e.
X,

Robust low-rank LP

» We can exploit the low-rank structure of A, and solve the above
problem in time linear in m + n, for fixed rank.



Low-rank LASSO e

Part Il
In many learning problems, we need to solve many instances of the
LASSO problem
min [|X"w = yllz + || wl]s.
where

» For all the instanc~es, the matrix X is a rank-one modification of
the same matrix X.

» Matrix X is close to low-rank (hence, X is).

In the topic imaging problem:
» Xisa term-by-document matrix that represents the whole corpus.

> y is one row of X that encodes presence or absence of the topic
in documents.

» X contains all remaining rows. Lowrank LASSO



Robust low-rank LASSO R it
Part Il
The robust low-rank LASSO

min max (X + ) w — yll2 + Al|wl];

is expressed as a variant of “elastic net”:

min 7w — llo + A wls + ]| wll

» Solution can be found in time linear in m 4+ n, for fixed rank.

» Solution has much better properties than low-rank LASSO, e.g.
we can control the amount of sparsity.

Low-rank LASSO



Robust and Sparse
Example Optimization

Part Il

Rank-1 LASSO (left) and Robust Rank-1 LASSO (right) with random data. The
plot shows the elements of the solution as a function of the /;-norm penalty
parameter.

» Without robustness (e = 0), the cardinality is 1 for 0 < A < Amax,
where Ana is @ function of data. For A > Anax, w = 0 at optimum.
Hence the /i-norm fails to control the solution.

Low-rank LASSO

» With robustness (e = 0.01), increasing X allows to gracefully
control the number of non-zeros in the solution.



Numerical experiments: low-rank approximation

Are real-world datasets approximately low-rank?

[ Dataset TMC2007 RCV1V2 NYTIMES PUBMED

o 28,506 23,140 300,000 8,200,000
d 49,060 46,236 102,660 141,043

Time (s) | oxs1/0y | Time (s) | oxi1/0y | Time (5) [ 0xy1/0y | Time (s) | o0x41/01
k=5 1 0.1539 1 0.2609 47 0.4095 187 0.4072
k=10 1 0.1196 1 0.2100 50 0.3075 451 0.3494
k=15 1 0.1010 1 0.1907 59 0.2709 520 0.3041
k=20 2 0.0958 2 0.1769 73 0.2432 589 0.2793
k=25 3 0.0909 3 0.1662 87 0.2312 687 0.2680
k =30 4 0.0880 4 0.1615 93 0.2180 794 0.2580
k=235 4 0.0858 4 0.1555 114 0.2098 932 0.2477
k=40 5 0.0836 5 0.1507 130 0.2012 1150 0.2354
k=45 6 0.0826 5 0.1475 142 0.1932 1208 0.2255
k = 50 7 0.0811 7 0.1430 158 0.1850 1862 0.2209

Runtimes' for computing a rank-k approximation to the whole data matrix.

! Experiments are conducted on a personal work station: 16GB RAM, 2.6GHz quad-core Intel.

Robust and Sparse
Optimization
Part Il

Unsupervised learning

Supervised learning

Motivation
Example
SAFE

iz
maximum-likelihood

Example

Robust low-rank LP
Low-rank LASSO



Multi-label classification R it
Part Il
In multi-label classification, the task involves the same data matrix X,

but many different response vectors y.
» Treat each label as a single classification subproblem (one-vs-all).

» Evaluation metric: Macro-F1 measure.
» Datasets:

» RCV1-V2: 23,149 training documents; 781,265 test documents;
46,236 features; 101 labels.

» TMC2007: 28,596 aviation safety reports; 49,060 features; 22
labels.

Low-rank LASSO



Robust and Sparse
Optimization

Multi-label classification
Part Il

Plot performance vs. training times for various values of rank
k=5,10,...,50.
RCV1V2 data set

TMC 2007 data set
o S
82 ; ot 63 i i e T ot T 03
p
8 625 o
80 1 52
1
o # o
8 ! Boiso . f
RN 5l
g IR
» } 605 #'
” (R LASSO i RASS0
- —e-RLALASSO ses|d —e-AtRLASSO | |
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In both cases, the low-rank robust counterpart allows to recover the
performance obtained with full-rank LASSO (red dot), for a fraction of S,

computing time.



Topic imaging e Cpimiaton

Part Il
» Labels are columns of whole data matrix X.

» Compute low-rank approximation of X when a column is
removed.

» Evaluation: report predictive word lists for 10 queries.

» Datasets:
» NYTimes: 300,000 documents; 102,660 features, file size is 1GB.
Queries: 10 industry sectors.
» PUBMED: 8,200,000 documents; 141,043 features, file size is
7.8GB. Queries: 10 diseases.
» In both cases we have pre-computed a rank k (k = 20)
approximation using power iteration.

Low-rank LASSO



Topic imaging

automotive i technology | tourism | aerosp: defence financial | health )t gaming
car government company tourist boeing afghanistan | company health oil game
vehicle farm computer hotel aircraft attack million care prices gambling
auto farmer system business space forces stock cost gas casino
sales food web visitor program military market patient fuel player
model water information | economy jet gulf money corp company online
driver trade internet travel plane troop business al_gore barrel computer
ford land american tour nasa aircraft firm doctor gasoline tribe
driving crop job local flight terrorist fund drug bush money
engine economic product room airbus president | investment medical energy playstation
consumer country software plan military war economy insurance opec video

The New York Times data: Top 10 predictive words for different queries
corresponding to industry sectors.

arthritis | asthma cancer depression | diabetes | gastritis hiv leukemia igrai ki
joint bronchial tumor effect diabetic gastric aid cell headache | treatment
synovial | asthmatic treatment treatment insulin h.pylori infection acute headaches effect
infection children carcinoma disorder level chronic cell bone-marrow pain nerve
chronic | respiratory cell depressed glucose ulcer hiv-1 leukemic disorder syndrome
pain symptom | chemotherapy pressure control acid infected tumor women disorder
treatment allergic survival anxiety plasma stomach antibodies remission chronic neuron
fluid infant risk symptom diet atrophic risk t.cell duration receptor
knee inhalation dna drug liver antral positive antigen symptom alzheimer
acute airway malignant neuron renal reflux transmission | chemotherapy gene response
therapy fevl diagnosis response normal | treatment drug expression therapy brain

PubMed data: Top 10 predictive words for different queries corresponding to

diseases.
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StatNews project R pimisaton

Part Il
Athttp://statnews.org/:

» Summarize large databases of news media.

» Predictive framework: relevant terms are found via sparse
learning techniques.

Joint work with Bin Yu (Statistics, UC Berkeley).

StatNews


http://statnews.org/

Sparse predictive framework R pimisaton
Part Il
To summarize how a topic is treated in a text database, we solve

min [ XTw — yl2 : [wlo < k

where

» X is n x mterm-by-document matrix (containing e.g.,
occurrences of terms across documents).

» m-vector y represents query term (e.g., indicates occurrence of
query term across all documents).

» w contains predictor coefficients; non-zeroes in w identify the few
terms that are highly predictive of the query.

> ||wl|o stands for cardinality (number of non-zeros) of w; k is
user-defined target cardinality (usually k << m, n, e.g.k = 50).

StatNews



Robust and Sparse

Staircase visualization Optimization

Image of Climate Change in Chinese Media Partl

The image of‘cimatschangs" on Peope's Day (China)

Unsupervised learning

Supervised learning

Basics
Recovery
Safe Feature Elimination

Motivation
Example
SAFE
Relaxation
Algorithms
Examples
Variants

Image of topic “Climate change” over time. Each square encodes the size of Sparse graphical models
Penalized

regression coefficient in LASSO over a specific quarter. Source: People’s e
Daily, 2000-2011. Example
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Low-rank LASSO
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Case study

Aviation safety reports

After each commercial flight in the US, pilots generate “ASRS reports”
to document flight-related issues.

Key problem: detect emerging issues that are not being classified into
existing categories, e.g.:

» “Wake vortex” problem of the Boeing 757.
» Increased number of runway incursions at LAX.

Robust and Sparse
Optimization
Part Il
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Case study R pimisaton

Aviation safety reports Part Il

After each commercial flight in the US, pilots generate “ASRS reports”
to document flight-related issues.

Key problem: detect emerging issues that are not being classified into
existing categories, e.g.:

» “Wake vortex” problem of the Boeing 757.
» Increased number of runway incursions at LAX.

Don’t search for a needle — picture the haystack!

StatNews



Sparse PCA
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Sparse PCA of runway-related reports in the ASRS database.
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Recovering existing categories
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Sparse PCA of ASRS reports, with categories shown.
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Challenges and research topics R pimisaton

. Part Il
» Sparse learning:

» Sparse supervised learning (LASSO) and unsupervised learning
(sparse PCA).
> Sparse probability optimization.
» Robust optimization:

> Applications in data reduction.
» Energy management.

StatNews



Outline

Overview of Machine Learning
Unsupervised learning
Supervised learning

Sparse supervised learning
Basics
Recovery
Safe Feature Elimination

Sparse PCA
Motivation
Example
SAFE
Relaxation
Algorithms
Examples
Variants

Sparse Covariance Selection
Sparse graphical models
Penalized maximum-likelihood
Example

Robust Optimization for Dimensionality Reduction
Robust low-rank LP
Low-rank LASSO

StatNews Project

References

«O>» «Fr <«

nae




References |

1

2

&

[4]

5

[6:

7

8

[9

Emmanuel J. Candeés, Xiaodong Li, Yi Ma, and John Wright.
Robust principal component analysis?
2009

Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan Willsky.
The convex geometry of linear inverse problems.
Foundations of Computational Mathematics, 12(6):805-849, 2012.

Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani.

Safe feature elimination for the lasso and sparse supervised learning problems.
Pacific Journal of Optimization, (4):667—-698, January 2012,

Special Issue on Conic Optimization.

Michel Journée, Yurii Nesterov, Peter Richtarik, and Rodolphe Sepulchre.
Generalized power method for sparse principal component analysis.
The Journal of Machine Learning Research, 11:517-553, 2010.

Olivier Ledoit and Michael Wolf.
A well-conditioned estimator for large-dimensional covariance matrices.
Journal of Multivariate Analysis, 88:365-411, February 2004.

O.Banerijee, L. El Ghaoui, and A. d’Aspremont.
Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data.
Journal of Machine Learning Research, 9:485-516, March 2008

S. Sra, S.J. Wright, and S. Nowozin.
Optimization for Machine Learning.
MIT Press, 2011.

Y. Zhang, A. d’Aspremont, and L. El Ghaoui.

Sparse PCA: Convex relaxations, algorithms and applications.

In M. Anjos and J.B. Lasserre, editors, Handbook on Semidefinite, Cone and Polynomial Optimization: Theory,
Algorithms, Software and Applications. Springer, 2011.

To appear.

Y. Zhang and L. El Ghaoui.
Large-scale sparse principal component analysis and application to text data.
December 2011.

Robust and Sparse
Optimization
Part Il

Unsupervised learning
Supervised learning

Basics
Recovery
Safe Feature Elimination

Motivation
Example
SAFE
Relaxation
Algorithms
Examples
Variants

Sparse graphical models

Penalized
maximum-likelihood

Example

Robust low-rank LP
Low-rank LASSO

References



	Overview of Machine Learning
	Unsupervised learning
	Supervised learning

	Sparse supervised learning
	Basics
	Recovery
	Safe Feature Elimination

	Sparse PCA
	Motivation
	Example
	SAFE
	Relaxation
	Algorithms
	Examples
	Variants

	Sparse Covariance Selection
	Sparse graphical models
	Penalized maximum-likelihood
	Example

	Robust Optimization for Dimensionality Reduction
	Robust low-rank LP
	Low-rank LASSO

	StatNews Project
	References

