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Program

1. Yesterday morning:
Introduction to nonsmooth convex
optimization
2. Yesterday afternoon:
Models and the proximal point algorithm
3. Today morning:
Bundle methods and the Moreau-Yosida
regularization
4. Today afternoon:
Beyond first order: VU-decomposition
methods



Introduction to nonsmooth
convex optimization



Let’s start with a question
What is the

fast est method
you know
to solve F(x) =0,

a nonlinear system of equations?



source: Alan Rust




Answer: Newton’s method
0 F(x*)
F(x*)+ F'(x*)d
—fast convergence x" ! = x¥ + d¢*

Q
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Answer: Newton’s method
0 F(x*)
F(x*)+ F'(x*)d
—fast convergence x**' = x¥ 4 g*

one linear system per iteration

Q




Newton method is @ccurate

F(x)=1+x+x3/3

1 2.00000000000000 0
2 0.86666666666067 1
3 -0.32323745064862
4 -0.92578663808031
5  -0.82332584261905
6
7
8

—

-0.81774699537697
-0.81773167400186
-0.81773167388682 15

o i b —

Newton



From J-Ch. Gilbert’s classes
Le résultat de base :

Si- F(z.) =0,
- Fest C*?! dans un voisinage de z«,
- F'(z.) est inversible,
alors il existe un voisinage V' de x, tel que si z; € V, I"algorithme
de Newton est bien défini et génére une suite
{zr} C V quiconverge quadratiquement vers .. : il existe

une constante C' telle que

lzker — || < Cllze — 2. |>, Yk > 1.

e Si F est seulement C, la convergence n’est que superlinéaire :

[

Tz —2.]] — 0, pourk — oo.
*



And Newton’s method for optimization?
0 = F(x")
~ F(x¥)+ F'(x¥)d
—fast convergence
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And Newton’s method for optimization?
0 = Vf(x¥)
~ VI(x*)+ V2f(x*)d
—fast convergence
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And Newton’s method for optimization?
0 = Vf(x¥)
~ VI(x*)+ V2f(x*)d
—fast convergence
XK = XK — [v2r(x¥)] TV F(x¥)
F(x) = Vf(x) for an objective f
min f = minf-model

min f(x)+ (Vi(x"),d) + % (V2f(x")d,d)



From J-Ch. Gilbert’s classes
e Convergence:

Si- Vf(zs) =0,
. f est C*! dans un voisinage de .,
. ng(:l?*) est inversible,
alors il existe un voisinage V' de x, tel que si z; € V,
I’algorithme de Newton est bien défini et génere
une suite {zx } C V qui converge quadratiquement

VEIS Tx.



From J-Ch. Gilbert’s classes
e Convergence:

Si- Vf(zs) =0,
. f est C*! dans un voisinage de .,
. ng(:l?*) est inversible,
alors il existe un voisinage V' de x, tel que si z; € V,
I’algorithme de Newton est bien défini et génere
une suite {zx } C V qui converge quadratiquement

VEIS Tx.

. f € C?> = superlinear convergence



Newton iterates for optimization

6 T T

4 -
2+

o~

-2

| | | | | | I
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

F(x)=1+x+x%/3 E=SIIERE PR ayaV.




Newton iterates for optimization

6

4

2




Newton iterates for optimization




Newton iterates for optimization

6 T T T T T T T T




Newton iterates for optimization

6 T T T T T T T T

Can we avoid computing the Hessian matrix?
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Can we avoid computing the Hessian matrix? YES!

min f(x) + (VF(x*), d) + - <d,d>
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Newton iterates for optimization

6 T T T T T T T T

Can we avoid computing the Hessian matrix? YES!

min f(x) + (VF(x*), d) + - <d,d>

quasi-Newton matrix

0 = VI(x¥) + M*d



quasi-Newton iterates for optimization

Eventually, the true Hessian curvature is
estimated 111\ along the generated directions
(secant equation)



quasi-Newton methods are accurate too!

1 2.00000000000000 0 1 2.00000000000000 0
2 1.50000000000000 0 2 0.86666666666667 1
3 0.61224489795918 1 2 -0.32323745064862 L
4 -0.16202797536640 1 4 -0.92578663808031 L
5 -0.92209500449059 1 5 -0.82332584261905 2
6  -0.78540447895661 1 6  -0.81774699537697 5
7 -0.816090563 19699 3 7 -0.81773167400186 9
8 -0.81775774021392 5 8 -0.81773167338682 15
9 -0.81773165292101 8
10 -0.81773167388656 13
11 -0.81773167388682 15
quasi-Newton

Newton



DeIFIis & Moré Criterion from J-Ch. Gilbert’s classes

> {xkT1 = xk+ M¥d¥} converges to x*
» V2f(x*) is non singular
> VF(x*)=0



De"._nis & Moré Criterion
> {xkT1 = xk+ M¥d¥} converges to x*
» V2f(x*) is non singular
> VFi(x*)=0
THEN
the convergence is superlinear if and only if

(M =921 ) (41 = 54) = o1 — 4]



DeIFIis & Moré Criterion from J-Ch. Gilbert’s classes

> {xkT1 = xk+ M¥d¥} converges to x*
» V2f(x*) is non singular
> VFi(x*)=0

THEN

the convergence is superlinear if and only if
(Mk - sz(X*)) (Xk—H —Xk) _ O(HXK—H _XKH)

Eventually, the true Hessian curvature is
estimated only along the generated directions
(secant equation)



What about 1st-order methods?
The same game, this time using a
method x* ™1 = xk — {, Vf(x¥) = xk — tx F(x¥) for
tx > 0 a sufficiently small stepsize ey cacuiion



What about 1st-order methods?
The same game, this time using a
method x* 1 = xk — {, VF(x¥) = xX — t,F(x¥) for

tk > 0 a SUffiCiently Sma" StepSize (note easy calculation)
0.5 T T T

0.4 SIS

0.3 - g

0.2 SIS LSS

0.1 [ITTHTINY THY PETTEEIYY

o e 1 1 1 1
0 20 40 60 80 100

x100 — _0.088237488857720

(x* = —0.817731673886824)




Comparison of x-values
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Comparison of x-values

2 % ‘

=¥2nd order (Newton)
© 1st order (Gradient) ]

Regarding F-values,
» with gradient method, after 100 iterations,
F(x'00) = 0.9115
» with Newton’s method, after 9 iterations,
F(x?) = —8.0491 x 107



Take away message from the smooth world
» Newton-like methods are ——fast
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everywhere



Take away message from the smooth world
» Newton-like methods are ——fast

» ——fast means accurate (# of digits)

» Accuracy reached by using a “more than

1st-order” [Tl for f

» No need to approximate the Hessian
everywhere

for functions that are C?

and have an invertible Hessian at x*



Moving to the nhonsmooth world




Computational NSO: what do we mean?
For the unconstrained problem

in/ )]

where f : IR” — IR is convex but not differentiable at
some points Algorithms defined according on
how much information is provided by certain oracle
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Computational NSO: what do we mean?
For the unconstrained problem
min f(x) |

where f : IR” — IR is convex but not differentiable at
some points. Algorithms defined according on
FEELITY information is provided by certain oracle

£ “black-box”
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in ()}

where f : IR” — IR is convex but not differentiable at
some points. Algorithms defined according on
FEELITY information is provided by certain oracle

£ “black-box”



A quick overview of Convex Analysis
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A quick overview of Convex Analysis
An example of a convex nonsmooth function

df(x) = {geR":f(y)>1f(x)+g'(y—x)forally}



A quick overview of Convex Analysis
An example of a convex nonsmooth function

df(x) = {geR":f(y)>1f(x)+g'(y—x)forally}
= {slopes of linearizations supporting f, tangent at x }



A very useful calculus rule for subdifferentials

A finite max-function f(x) := max;e, f/(x), with £ : R” — R”"
convex and differentiable

If(x) igEIR”:f(y)Zlf X)+g'(y—x) forally}

slopes of linearizations supporting f, tangent at x}



A very useful calculus rule for subdifferentials
A finite max-function f(x) := max;e; f/(x), with #/ : IR” — R”"
convex and differentiable

If(x) = ii ER": fm >’fix§+gT(y—x) for all y}



A very useful calculus rule for subdifferentials
A finite max-function f(x) := max;e; f/(x), with #/ : IR” — R”"
convex and differentiable

only
active
indices!

conv{VF(x):je€ I(x)}
I(x):={jel:f(x)="F(x)}



A very useful calculus rule for subdifferentials
A finite max-function f(x) := max;e; f/(x), with #/ : IR” — R”"
convex and differentiable

only
active
indices!

conv{VF(x):je€ I(x)}
I(x):={jel:f(x)="F(x)}

What is the subdifferential of f(x) = |x|?



Extension to compact set / and honsmooth fl

A sup-function f(x) := sup;c, f/(x), with 7 : IR” — R" convex,
» / compact
» j f/(x) is upper-semicontinuous

If(x) = cl<conv uje,(x)aff(x))

where the active set is defined as before:

I(x):={jel:f(x)="F(x)}
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A sup-function f(x) := sup;c, f/(x), with 7 : IR” — R" convex,
» / compact
» j f/(x) is upper-semicontinuous

IF(x) = cl<conv Ujel(x)8fj(x)>
where the active set is defined as before:
I(x):={jel:f(x)="F(x)}
Given n symmetric matrices of order m, consider

A(X) := x1 A1 + XA+ ... XpAn



Extension to compact set / and honsmooth fl

A sup-function f(x) := sup;c, f/(x), with 7 : IR” — R" convex,
» / compact
» j f/(x) is upper-semicontinuous

IF(x) = c/(conv Ujel(x)8fj(x)>
where the active set is defined as before:
I(x):={jel:f(x)="F(x)}
Given n symmetric matrices of order m, consider

A(X) := x1 A1+ x0A2+ ... XpAn
What is the subdifferential of f(x) = Amax(A(X))?
(the maximum-eigenvalue)
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Computational NSO: what do we mean?
For the unconstrained problem
min f(x) |

where f: IR” — IR is convex but not differentiable at
some points. Algorithms defined according on
EEELITY information is provided by certain oracle

£ “black-box”

How common are honsmooth objective functlons?




When does nhonsmoothness appear?

if the [iELIey of the problem imposes a
nonsmooth model; or

if BJeE1e1ad of the solution is a concern;

or
in problems difficult to solve,

» because they are large scale
» because they are heterogeneous

sometimes the ELel[ViilolaNal=i1alels!

induces nonsmoothness



Example of NS model
Recovery of [[JJa 44 images (¢1-regularization of TV)

“||||H| >

= AR
l M n I

J/ILJJ'I'M



Example of sparse optimization

min{||x||1 : Ax = b}
find least 1-norm point on the affine plane
Tends to return a sparse point (sometimes, the sparsest)

{1 ball touches the affine plane
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Example of sparse optimization

min{||x||1 : Ax = b}
find least 1-norm point on the affine plane
Tends to return a sparse point (sometimes, the sparsest)

W:t10l denoises basis pursuit
min {[|Ax — b3 : [|x[l+ < 7}
or
min { x|+ + 5[ Ax — b|5 }
or
min {||x||+ : [[Ax—bl[5 < o}

{1 ball touches the affine plane



Example of sparse optimization

min{ x|+ - [{CEY
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Example of sparse optimization

min{||x||: : EDIEE
find least 1-norm point on a
Tends to return a sparse point (sometimes, the sparsest)

(W.t:32]08 denoises basis pursuit

min { |[GER] - 13 lxlls <<}
or
min { 1x]1+ + & | GIEQD — o113}

f1 ball touches the set



Example of sparse optimization

min{||x||: : EDIEE
find least 1-norm point on a
Tends to return a sparse point (sometimes, the sparsest)

(W.t:32]08 denoises basis pursuit

mm{u- blE: lixlls < 7}
mm{||x||1+%||—b||s}
mm{||x||1 o1 < o}

f1 ball touches the set



Lagrangian Relaxation Example
Real-life optimization problems

(‘min ) C/(p)
jed
(primal) A« ?orj € J pl c Pl
) g (p') = Dem
\ jeJ
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Lagrangian Relaxation Example
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(max Y ~C/(p)
jed ' .
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Lagrangian Relaxation Example
Real-life optimization problems

(max Y, —C/(¢)
jed ' .
(primal) <« forje J: p e P/
Y. &() — Dem
jed

\

have a (dual) with separable structure:

min —(x,Dem) + Z {max ;Cej(”[;’l)—l—<x,gf(p’)>

jed



La%ran lan Relaxation Example
eal-lite optimization problems

(max Y, ~Cl(p)

cJ

(primal) <« 1‘orj cJ:pepl

Y 9(¢) = Dem

jed

have a (dual) with separable structure:

min  f(x):= f(x) + ) f/(x)
X jed
mXin —(x,Dem) + /;j { max ;CEI - +(x,d(p

))



La%ran lan Relaxation Example
eal-lite optimization problems

(max Y, ~Cl(p)

cJ

(primal) <« 1‘orj cJ:pepl

Y 9(¢) = Dem

jed

have a (dual) with separable structure:

min  f(x):= f(x) + ) f(x)

X jed

: max —C/(p))+ (x,d/(p
min (x,Dem) + /;j { b ’P’ (

Similar for Benders Decomposition

))



Computing subgradients: how difficult is it?
1. f(x) =
2. Alinear Lasso function,

f(x) = |Ix|l1 + 5| Ax — b||3
3. A nonlinear Lasso function, h e ch

f(x) = lIxll + 411 () — ) [
4. One of the Lagrangian subproblems,
ey = { X —CR)+ (o)
' p e P!
5. The max-eigenvalue case
f(x) = max{y"A(x)y : [lyll2 < 1}




Computing subgradients: how difficult is it?

1.
2.

3.

f(x) =

A linear Lasso function,

f(x) = |Ix|l1 + 5| Ax — b||3
A nonlinear Lasso function, h 6 ch

1(x) = s+ 41 (h0) —) I3

. One of the Lagrangian subproblems,

j( kY. J max —_Cj(p/)+<xk,gf(p/)>
f1(x") : e P

. The max-eigenvalue case

f(x¥) = max{y"A(x)y : [lyll2 < 1}

What about computing the full 9f(x*)?



Computing subgradients: how difficult is it?

1. f(x) =

2. A linear Lasso function,

f(x) = ||Ix||l1 + 5 ||Ax — b||3
3. A nonlinear Lasso function, h e ch

f(x) = llxll+ 411 (nx) ) I3
4. One of the Lagrangian subproblems,
k) = | X —CP)+ (g P)
' p e P!
5. The max-eigenvalue case
f(x") = max{y"A(x)y : [lylla < 1}
What about computing the full 9f(x*)?

NSO methods in general are designed
for oracles delivering 1-subgradient only




What can be done with the oracle output?
An example of a convex nonsmooth function

df(x) = {geR":f(y)>f(x)+g (y—x)forally}
{slopes of linearizations supporting f, tangent at x }



What can be done with the oracle output?
An example of a convex nonsmooth function

1 oracle call=1 linearization Qo)

df(x) = {geR":f(y)>f(x)+g'(y—x)forally}
{slopes of linearizations supporting f, tangent at x }



What can be done with the oracle output?
An example of a convex nonsmooth function

1 oracle call=1 linearization Qo)

Linearization bad if oracle output is bad
wrong g can give a bad linearization




Using oracle subgradients in the stopping test
Algorithms for unconstrained [iieeid optimization
use as optimality certificate Fermat'’s rule

0 = V£(x)
and generate a minimizing sequence:
{x*} — X such that Vf(x*) — 0.
If f € C', then VF(X) =0



Using oracle subgradients in the stopping test
Algorithms for unconstrained [iieeid optimization
use as optimality certificate Fermat'’s rule

0 = V£(X)

and generate a minimizing sequence:
{x*} — X such that Vf(x*) — 0.

If f € C', then Vf(X) =0
In NSO things are less straightforward. ..




Using oracle subgradients in the stopping test
For the absolute value function, f(x) = |x| and

—1 x<0
df(x)=<[-1,1] x=0
1 x>0
Using as optimality certificate the inclusion
0 € df(x)

requires knowing the whole subdifferential!
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Why special NSO methods?
Smooth optimization techniques

fx) =l
IVE(xK)| =1,VxkK£0 9f(0)=[-1,1]

» Smooth stopping test fails:
VA(XM) <TOL (4 [g(x¥)| <TOL)
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» Finite differences fail
For f: IR® — IR defined by f(x) = max(x1, X2, X3)
af(0) =7
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Why special NSO methods?
Smooth optimization techniques
» Finite differences fail
For f: IR® — IR defined by f(x) = max(x1, X2, X3)

I(0) =7
Forward finite difference [0F+AX)=1(x)

X
Central finite difference f(”A’;K;(X_A)




Why special NSO methods?
Smooth optimization techniques
» Finite differences fail
For f : IR® — IR defined by f(x) = max(x1, x2, X3)
df(0) =unit simplex

Forward finite difference W =(1,1,1)

Central finite difference 102X 12 EETEIEE




Why special NSO methods?
Smooth optimization techniques

» Finite differences fail
For f : IR® — IR defined by f(x) = max(x1, x2, X3)
df(0) =unit simplex

Forward finite difference W =(1,1,1)
Central finite difference f(XJ“A’;Z: (x=4

none of them in the subdifferential!

—

N|—



Why special NSO methods?
Smooth optimization techniques

» Linesearches get trapped in kinks and fail

. Ko K11
fo
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Example 9.1, “Instability of steepest descent”



Why special NSO methods?
Smooth optimization techniques

» Linesearches get trapped in kinks and fail

Ko K11

Ko_2 f—2

Example 9.1, “Instability of steepest descent”

Universitext urx

J. Erédéric Bonnans

SN J. Charles Gilbert

- Claude Lemaréchal

3 a“ Claudia A. Sagastizabal
£ W Numerical

§ Optimization
: Py




Why special NSO methods?
Smooth optimization techniques (suite)
—g(x¥) may not provide descent
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Why special NSO methods?

Smooth optimization techniques

Smooth stopping test fails

Finite difference approximations fail

Linesearches get trapped in kinks and fail

Direction opposite to a subgradient may increase the
functional values



Nonsmooth skiing
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Nonsmooth skiing

e i

In NSO
the skier
is blind




Looking for sound optimality certificates in NSO
For the absolute value function, f(x) = |x| and

—1 x<0
df(x)=<[-1,1] x=0
1 x>0
Using as optimality certificate the inclusion
0 € df(x)

requires knowing the whole subdifferential!
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Looking for sound optimality certificates in NSO

For the absolute value function, f(x) = |x| and

—1 x <0
df(x)=¢[-1,1] x=0

1 x>0
Using as optimality certificate the inclusion

0 € 9f(x)

requires knowing the whole subdifferential!

AL L L 22
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What happens with the stopping test?
In m optimization the inclusion
0 € df(x)
fails as optimality certificate
» As a set-valued mapping df(x) is osc:
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not rely on the straightforward extension of Fermat’s
rule
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What happens with the stopping test?
We need to device a sound stopping test that does

not rely on the straightforward extension of Fermat’s
rule
0 € df(x)
We use instead
g € dsf(x) for ||g|| and € small
where the g-subdifferential contains the slopes of
linearizations supporting f [EGKE tangent at x:

def(x)={g€R": f(y) >f(x)+g"(y—x) g for all y}
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def(x) ={g € R": f(y) > f(x)+ g (v — x) | for all y}

‘!
S f+e

Epsilon
Subgradient
linearization



The e-subdifferential

For the absolute value function, f(x) = |x| {
If(x) =




The e-subdifferential

For the absolute value function, f(x) = |x| St x<o
[-1,—1—¢/x] iftx<—e/2, HAU T
0ef(x) =4 [~1,1] it —e/2<x<e/2,
[1—€/x,1] if x> ¢g/2.

N o
N o




The &-subdifferential

.
_,2

> As a set-valued mapping Jd.f(x) is osc:

N o

ek ¢
<£k,xk,g(xk) c agkf(xk)) XX = geaf(x)
9(x*)— 7.

> As a set-valued mapping, d:f(x) is isc: Given g € dsf(X)

ek — €
El(sk,xk,g(xk) € 8€kf(xk)> ; xK— x
9(x*) = 9.



The e-subdifferential

]

> As a set-valued mapping, dgf(x) is isc: Given g € dzf(X)
ek~ €
El(ek,xk,g(xk) € 8£kf(xk)> : xK —x

9(x)— 3.



The e-subdifferential

1]

> As a set-valued mapping, dgf(x) is isc: Given g € dzf(X)
ek~ €
El(ek,xk,g(xk) € 8£kf(xk)> : xK —x

9(x)— 3.



The &-subdifferential and bundle methods

Generate iterates so that for a [EHEE NEIL-REA!

> As a set-valued mapping def(x) is osc:

N

B
<ék,§(", §(xF) e agkf(&k)) X ox = gedf()

a(x*)—g.
with € ~ 0and ||g|| ~ 0
> As a set-valued mapping, def(x) is isc:
Given g € dsf(X) :

=
|

x> >

=
U
I

a(ék,xhg(xk) € agkf(;(k)) :

Q
—
>
=
N—r
1
QI



Building up £-subgradients in bundle methods
You told us

we were going to use subgradient information
provided by a black-box because knowing the full
subdifferential is too much of a requirement.



Building up £-subgradients in bundle methods
You told us

we were going to use subgradient information
provided by a black-box because knowing the full
subdifferential is too much of a requirement.

Now you want to use the e-subdifferential, an even
larger set!




The transportation formula

Or how to express subgradients at x' as
e-subgradients at XX
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The transportation formula
Consider g' € df(x")
The |nclu5|on holds if and only if, for all y € IR"
fly) = f(xX)+9'"(y —x)
f(x)+g'"(y - X)if( “)
f(&)+ g (y — x) ( f(x%) — >
F(8%) + g (y — X'+ %K) — (f(f(")—f(x’)>
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The transportation formula
Consider g’ € df(x")
The inclusion holds if and only if, for all y € IR”

f(y)

>

f(x)+4'"(y—x)



The transportatlon formula

Consider g' € df(x")

The |nclu5|on holds if and only if, for all y € IR"
f( )Fg y=x)

f(y)

>



The transportatlon formula
Consider g' € df(x")
The inclusion holds if and only if, for all y € IR”
fly) = ( )+g”(y X)

— f &k +oT( y—x") - (f()?k) _ f(x"))
| | f




The e-subdifferential and bundle methods
We collect the black-box

—I output at past iterations x',i = 1,2, ...k,
so that at iteration k we can define a [Vl of
information, centered at a special iterate X¥ € {x'}
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The &-subdifferential and bundle methods
We collect the black-box

—I output at past iterations x’,i = 1,2, ...k,
so that at iteration k we can define a [y of
information, centered at a special iterate XX € {x'}

N R )
o g € aei(;(k)f()’?k)

A suitable convex combination
=Y de(x*)and GF:= ) o'y
icBk icBk

will eventually satisfy the optimality condition!



Back to Computational NSO
For the unconstrained problem

imin ()}

where f: IR" — IR is convex but not
differentiable at some points, we shall define
algorithms based on information provided by

an oracle or “black box” —Il endowed

with reliable (] lileREHE
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by an oracle {

endowed with reliable stopping tests
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1 Call the oracle at x*.

2 Compute x**1 = xk — t, g(x¥) for a suitable
stepsize tx > 0.

3 Make k = k+1 and loop to 1.
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Subgradient methods

» Simple to code @@

» Generate non-monotone functional values
» Converge to a minimizer for {tx} € £2\ /e
(eventually distance to solution set decreases)

L4l Lacks a stopping test

...does not use all available information!

f(x)??

9(x) € 9f(x)
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How is the oracle information used?
We look for algorithms based on information provided

by an oracle _’-< endowed with reliable
stopping tests
Black box information defines linearizations

that put together create a [Tl of the function f.
The model is used to define iterates and to put in
place a stopping test
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How is the oracle information used?

Black box information
defines linearizations that put together create a

ELEEENT of the function f.
 — fl,::f(xl) = M(x) = max; {f'+ ¢'"(x — x') }

g =9(x')

For future use: dM(x) = conv{g': i € I(x)}
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Improve the model at each iteration
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Cutting-plane methods
To minimize f (unavailable in an explicit manner),
minimize its model M(x) = max; {f' +g¢'"(x — x") }

Improve the model at each iteration:

max;<k {fi + g’T(x = Xi)}
max(Mk_1 (x), X+ gKT(x — xk))
k

where x

minimizes My _ 1

Instead of x* € argminf(x) at one shot

xK € argminMy_1(x) FECIED



Cutting-plane methods

Artificial bounding at least for the first iterations
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{M4(x**1)} increases, but functional values may not decrease

f(x?) > f(x")

Optimality certificate checks if 8 := f(x*) — Mx_1(x) is small



Cutting-plane methods

0 Choose x' and set k =1 and My = —

1 Call the oracle at xX.

2 Given My(-) = max(Mk—1 (), f+g"(- _Xk)>

compute x*1 € arg minx Mx(x)
3 Setk=k+1,loopto 1.
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Cutting-plane methods

0 Choose x' and set k =1 and My = —

1 Call the oracle at x*.
If 8 = f(x*) —Mx_1(x¥) < tol STOP

2 Given My(-) = max (M), #*+ g"(-— x))

compute x*1 € arg minx Mx(x)
3 Set k =k+1, loopto 1.

In 2, Mk(x) = max;<x{f +g'"(x — x')} and X polyhedral.
—> 2 = to solving a linear programming problem

min r
st. relR,xeX

r>f+g' 7 (x—x")fori<k
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» One LP solve per iteration
» Require a sound choice of initial bounding set (polyhedral
X)
» Generate non-monotone functional values
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One LP solve per iteration
Require a sound choice of initial bounding set (polyhedral
X)
Generate non-monotone functional values
Converge for a subsequence, as
lim inf(f(xk) — M4 (xk)> —0
Have a good stopping test
LP problem has more and more constraints, and eventually
numerical errors prevail

min r

st. relR,xeX

r>f+4+g 7 (x—x") fori <k



Cutting-plane methods: pros and cons

» CP methods bring in the concept of a model,
which gives a stopping test
(a subsequence of {} — 0)

» CP methods still non-monotone

|
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Cutting-plane methods: pros and cons

» CP methods bring in the concept of a model,
which gives a stopping test
(a subsequence of {} — 0)

» CP methods still non-monotone

Monotonicity is the key to defeat numerical instability an
oscillations: the subsequence of functional values at green-spot
iterates converges. Given m € (0, 1), the in
bundle methods selects green-spots as follows:

f(Xk+1) < f(j\(k) o m6k — )'\(k+1 . xk+1

Limit points of the serious-step subsequence {X*} minimize f



Bundle methods

0 Choose x', t; > 0, and set ' = x', k = 1.

1 Given %, My and t, compute x**1 and
5k—|—1 = f(f(k) — Mk(Xk—H)

2 Call the oracle at x'. If 8,1 < tol 1[0

3 (Descent Rule)

K+1
FORTTY < F(R) — méy? {

yes SS: xKtT = xkt1

no  NS:xkt1 = xk

4 Choose a new model and stepsize.
5 Setk=k+1,loopto 1.



Bundle methods: the power of the descent rule
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The serious-step subsequence satisfies the descent rule

F(RET) < F(&F) — mé, (DR)
Rearranging terms, for k serious,
mé&y < F(XF) — f(xF)
(telescopic) sum yields

(0<) mY & <& —r for f* :=liminf (")

Kserious

Aslong as o, > 0in (DR) |

» Either f* = —oo (problem unbounded below)
» Or f* > —oo, in which case

> 0k — 0



Bundle methods: what about non-serious points?

Without even specifying how iterates x* are
computed, if the descent rule holds for infinitely many
iterates, the subsequence of serious optimality
certificates (8x) goes to zero (and {X*} will be
minimizing).
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What about iterates that do not satisfy (DR) ?

These are the null steps in the bundle jargon.
Their role is to enrich the model and gain more
information on f, so that eventually an iterate is
accepted as a serious one.



Bundle methods: what about non-serious points?

Without even specifying how iterates x* are
computed, if the descent rule holds for infinitely many
iterates, the subsequence of serious optimality
certificates (8x) goes to zero (and {X*} will be
minimizing). The above ensures convergence for the
serious subsequence

What about iterates that do not satisfy (DR) ?

These are the null steps in the bundle jargon.

Their role is to enrich the model and gain more
information on f, so that eventually an iterate is
accepted as a serious one.

The analysis of the situation when there is a last serious
iterate, X, followed by infinitely many null steps, is related to



A question for you:

Ever heard of the proximal
point mapping?



Answer provided by Jean-Jacques Moreau
The Moreau-envelope of f is a C''-smoothing of f

Fule) = min { 1)+ Jally =12}



Answer provided by Jean-Jacques Moreau
The Moreau-envelope of f is a C''-smoothing of f

Fule) = min { 1)+ Jally =12}

ethe unique minimizer is the
proximal point mapping pL(x)

ethe envelope’s gradient is
VFu(x) = p (x - pu(X)>
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How to compute the prox?

p=pi(x) <= p=argminf(y)+zly—x|3
<« 0€Jf(p)+Hp—x)

gl . (< —p) € 9f(p)

The m inclusion cannot be solved without
full knowledge of the subdifferential, needs an
informative oracle

note 1: <= p € x — tdf(p) akin to a subgradient method
note 2: X minimizes f <= p=X <= 0 < df(p) = Jf(x)



Proximal point algorithm (PPA) (accel. Nesterov, FisTa)
Given starting point x' and prox-stepsize 0,
k+1 f(yk
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Proximal point algorithm (PPA) (accel. Nesterov, FisTa)
Given starting point x' and prox-stepsize 0,

Xk—H — p{k (Xk)
<~

1 = argmin (y) + o ly — x¥|3

X

> of interest only if computing p}, (x*) is much easier than
minimizing f

P stepsize fx > 0 impacts on the number of iterations (speed)

XK1 _ xk B p{k(Xk) _xk

» optimality certificate 8 :=
Iy Ty




Proximal point: calculus rules

» separable sum:
f(x,y) = g(x) + h(y) =
pi(x) = (P2(x),PP())
» scalar factor (o # 0) and translation (v # 0):
f(x)=g(ax+v) =
pi(x) = & (P ¥(ax+v)—v)
» “perspective” (o > 0):
f(x) = ag(Fx) = pj(x) = apf’ (%)

(04



Proximal point: special functions
» + linear term (v # 0):
f(x) = g(x) + (v, x) = pi(x) = p{ (x = v)
» + convex quadratic term (¢ > 0):
1 2
1(x) = g(x) + S-llx = vIP =

flvy _ A9 _ _L
pi(x) = p;~ (Ax+ (1 ).)v)for),_tJr1

» composition with linear term such that A'A = él,
(a # 0):
f(x) =g(Ax+v) =
pl(x) = (I— ¢ATA)x + oA [p?/a(Ax+ v)—v
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Proximal point algorithm: convergence
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minimizer and f(x*) N\, min f
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the proximal point subgradient

p=pi(x) <= p=argminf(y)+ 2illy — x|
<= 0¢cdf(p)+;(p—x)
Take g(p) := 1(x — p) € df(p) satisfying the OC
Proceeding like in the transportation formula,
g(p) € def(x) fore = f(x)—f(p)—g(p) (x —p)
= f(x)—1f(p)—[x—pl?/t

For the PPA, this means that

XM = 5K — gk for g € O, F(X¥)

k+1||2

and Ek11 = f(Xk) — f(Xk+1) — —HXk—;li



PPA: an implicit e-subgradient descent method

k+1

X = Xk — tkgk for gk c 88k+1 f(Xk)

and

kg 1= F(xK) — F(xK1) — [k k12

Ik



PPA: an implicit e-subgradient descent method

Kk+1

XK= xK — g for g € g, , . F(x¥)

and
: k k-+1
€1 = F(xT) — F(x* 1) — =
note 4: the method is still implicit, check &
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XK= xK — g for g € g, , . F(x¥)
and k k41112
: k k-+1 X —x
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note 4: the method is still implicit, check &

What if p! is not computable?

Can we make the method implementable?



PPA: an implicit e-subgradient descent method

XK= xK — g for g € g, , . F(x¥)
and
k+1||2

Eki1 1= f(Xk) = f(Xk+1) — —|Xk_;’((

note 4: the method is still implicit, check &

What if p! is not computable?

Can we make the method implementable?

YES!

Use the bundle ideas

to compute (ap)proximal points



Bundle methods prove most useful

In situations
» when the objective function is not available explicitly

» when we do not have access to the full subdifferential

» when calculations need to be done with high precision
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Bundling to approximate the p

. : 1 .
WANT: p:p{(x):argmlnf(y)+2—t||y—x\|§

or, equivalently, finding p such that 17()“( —p) € If(p)
V:\2=H M, a model of f for which we do have full
knOWIGdge Of the SUdefferentlal (recall note for future use):

X . 1.
qu?"(X)=argmmM(y)+2—tHy—X||§ (oP)

or, equivalently, finding g such that 17()“(— q) € IM(q)
Now the [SRIIE inclusion can be solved!

1 .
G:= ?(X—q):Za’g’
i

is a convex combination of active subgradients,
computed for free when solving (QP)



Bundling to approximate the p

Theorem[CL93] Suppose the models satisfy
> Mi(y) < f(y) for all k and y
> Mit1(y) > £(a") +9(¢") (v — d")
> Mii1(y) > M(q") + G (y — ¢")
If 0 < tin < tkt1 < tk, then
lim g" =% and lim Mk(q*) = (%)

K—yoo K—yoo
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g

the bundle subgradient
Mo : 1 SIE
g=p; (%) =argminM(y) + ||y — |13
Take G = (% — q) € IM(q) satisfying the OC

(op)



the bundle subgradlent
g=pt (%) =argminM(y)+ _Hy %|I5 (QP)

Take G = (% — q) € IM(q) satisfying the OC
Proceedlng like in the transportation formula,

G € def(X) fore := f(X)—M(q) — G'(X—q)
= f(&)—M(q) — [Ix—q|?/t
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the bundle subgradlent
q=p: 1'(%) =argminM(y) -+ _Hy %|I5

Take G = (% — q) € IM(q) satisfying the OC
Proceedlng like in the transportation formula,

G € def(X) fore := f(X)—M(q) — G'(X—q)
= f(&)—M(q) — [Ix—q|?/t
= 0 — tlGI°

(op)

For the bundling procedure, this means (now g = x*t1)
X = %K1, G" for G € 9, f(X¥)

and & = &k + t|| G*||* all Bl values, computed
when solving (QP)



lllustration of oracles and models
The cutting-plane model is not the only one satisfying
the [CL93] conditions
> Mi(y) < f(y) for all k and y
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There are many different models
CP models are the most straightforward ones. There
are other possibilities, that exploit structural
knowledge
For x € IR", given matrices A > 0, B = 0,

f(x) = VxTAx+x'Bx

is called the “half-and-half” function
For n =2, it corresponds to

f(x1,X) = a|xq| + bxs

The oracle information for f can be available in
different forms



Models for the half-and-half function
STRUCTURE f(x)

(none | vV xTAx + x"Bx

fi(x) = VxTAx
E A(x)+hR(x)  Kh(x)=x"Bx

c(x) = (x,x"Bx) € R™"

m o) X
(h C)( ) h(C) _ \/m‘l' Cn+1




Models for the half-and-half function
STRUCTURE f(x)

(none | vV xTAx + x"Bx

fi(x) = VxTAx
E fi(x) + f2(x) f(x) = x"Bx

c(x) = (x,x"Bx) € R™"

c is smooth
compo [N IS Smooth
h(C) =/ Cy.,AC1:n+ Cpiq




Models for the half-and-half function

STRUCTURE f(x)
M | /xAx+x'Bx [ :=1(x¥), g" € 9f(x")

fi(x) = VxTAx
E A(x)+hR(x)  Kh(x)=x"Bx

c(x) = (x,x"Bx) € R™"

m o) X
(h C)( ) h(C) _ \/m‘l' Cn+1




Models for the half-and-half function
STRUCTURE f(x)

(none. VX Ax+x"Bx 1= 1(xK), g€ € If(x")

fi(x) = VxTAx
E fi(x) + f2(x) f(x) = x"Bx
f1kﬂg$>f2k>Vf2(Xk)

c(x) = (x,x"Bx) € R™"

m o) X
(h C)( ) h(C) _ \/W‘F Cn+1




Models for the half-and-half function

STRUCTURE f(x)
.none| VxTAx+x"Bx = 1(x¥), g € af(x¥)
fi(x) = VxTAx
E fi(x) + f2(x) f(x) = x"Bx
£, gk, 15, Vi (xF)
c(x) = (x,x"Bx) € R™"
k KY (K
¢ =c(x"),c'(x
compo SN (), /('
m h(C): \/ C1nAC1n+Cn_|_1

hk, gk € dh(ck)




Take away messages

>

>

PPA has good properties for minimizing convex nonsmooth
functions

If computing exactly the prox at each iteration is too
demanding, a bundling approach can be put in place

the theory in [CL93]] allows for great generality in how the
approximation is done

Bundle methods enter into play to decide when the
approximal point is sufficiently good (DR) .

If rough approximations without optimality certificate are
enough: SG

CP methods are more reliable (stopping test) but LP grows
indefinitely, need bounding set X, and can be unstable
Bundle methods stabilize CP, have reliable stopping test,
solve one QP of controllable size per iteration



Take away messages

>

>

>

PPA has good properties for minimizing convex nonsmooth
functions

If computing exactly the prox at each iteration is too
demanding, a bundling approach can be put in place

the theory in [CL93]] allows for great generality in how the
approximation is done

Bundle methods enter into play to decide when the
approximal point is sufficiently good (DR) .

If rough approximations without optimality certificate are
enough: SG

CP methods are more reliable (stopping test) but LP grows
indefinitely, need bounding set X, and can be unstable
Bundle methods stabilize CP, have reliable stopping test,
solve one QP of controllable size per iteration

Beware all of the above depends on having exact oracle
information



