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Program

1. Yesterday morning:
Introduction to nonsmooth convex
optimization

2. Yesterday afternoon:
Models and the proximal point algorithm

3. Today morning:
Bundle methods and the Moreau-Yosida
regularization

4. Today afternoon:
Beyond first order: VU-decomposition
methods



Introduction to nonsmooth
convex optimization



Let’s start with a question

What is the

est method

you know

to solve F(x) = 0,

a nonlinear system of equations?



Answer provided by Isaac Newton

source: Alan Rust



Answer: Newton’s method from J-Ch. Gilbert’s classes

0 = F (x∗)
≈ F (xk)+F ′(xk)d

convergence xk+1 = xk +d∗

one linear system per iteration
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Newton method is accurate

F (x) = 1+ x + x3/3



From J-Ch. Gilbert’s classes
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From J-Ch. Gilbert’s classes

• f ∈ C2 =⇒ superlinear convergence
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• f ∈ C2 =⇒ superlinear convergence



Newton iterates for optimization

F (x) = 1+ x + x3/3 =⇒ f (x) = x + x2/2+ x4/12



Newton iterates for optimization



Newton iterates for optimization



Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

min
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〈
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1
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〈
Mk d ,d

〉
quasi-Newton matrix
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Newton iterates for optimization

Can we avoid computing the Hessian matrix?

YES!

min
d

f (xk) +
〈
∇f (xk),d

〉
+

1
2

〈
Mk d ,d

〉
quasi-Newton matrix

0 = ∇f (xk) + Mkd



Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

min
d

f (xk) +
〈
∇f (xk),d

〉
+

1
2

〈
Mk d ,d

〉

quasi-Newton matrix

0 = ∇f (xk) + Mkd



Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

min
d

f (xk) +
〈
∇f (xk),d

〉
+

1
2

〈
Mk d ,d

〉
quasi-Newton matrix

0 = ∇f (xk) + Mkd



Newton iterates for optimization

Can we avoid computing the Hessian matrix? YES!

min
d

f (xk) +
〈
∇f (xk),d

〉
+

1
2

〈
Mk d ,d

〉
quasi-Newton matrix

0 = ∇f (xk) + Mkd



quasi-Newton iterates for optimization

Eventually, the true Hessian curvature is
estimated only along the generated directions
(secant equation)



quasi-Newton methods are accurate too!



Dennis & Moré Criterion from J-Ch. Gilbert’s classesIF
I {xk+1 = xk + Mkdk} converges to x∗

I ∇2f (x∗) is non singular
I ∇f (x∗) = 0

THEN
the convergence is superlinear if and only if(

Mk −∇
2f (x∗)

)
(xk+1− xk) = o(‖xk+1− xk‖)

Eventually, the true Hessian curvature is
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What about 1st-order methods?
The same game, this time using a gradient
method xk+1 = xk − tk∇f (xk) = xk − tkF(xk) for
tk > 0 a sufficiently small stepsize (note easy calculation)

x100 =−0.088237488857720
(x∗ =−0.817731673886824)
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Comparison of x-values

Regarding F -values,
I with gradient method, after 100 iterations,

F(x100) = 0.9115
I with Newton’s method, after 9 iterations,

F(x9) =−8.0491×10−16
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Take away message from the smooth world
I Newton-like methods are

I means accurate (# of digits)

I Accuracy reached by using a “more than
1st-order” model for f

I No need to approximate the Hessian
everywhere

for functions that are C2

and have an invertible Hessian at x∗
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Moving to the nonsmooth world



Computational NSO: what do we mean?
For the unconstrained problem

min f (x) ,

where f : IRn→ IR is convex but not differentiable at
some points Algorithms defined according on
how much information is provided by certain oracle
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A very useful calculus rule for subdifferentials
A finite max-function f (x) := maxj∈I f j(x), with f j : IRn→ Rn

convex and differentiable
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Extension to compact set I and nonsmooth f j

A sup-function f (x) := supj∈I f j(x), with f j : IRn→ Rn convex,
I I compact
I j 7→ f j(x) is upper-semicontinuous

∂ f (x) = cl
(

conv ∪j∈I(x)∂ f j(x)
)

where the active set is defined as before:

I(x) :=
{

j ∈ I : f (x) = f j(x)
}

Given n symmetric matrices of order m, consider

A(x) := x1A1 + x2A2 + . . .xnAn

What is the subdifferential of f (x) = λmax(A(x))?
(the maximum-eigenvalue)
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When does nonsmoothness appear?

* if the nature of the problem imposes a
nonsmooth model; or

* if sparsity of the solution is a concern;
or

* in problems difficult to solve,
I because they are large scale
I because they are heterogeneous

sometimes the solution method
induces nonsmoothness



Example of NS model

Recovery of blocky images (`1-regularization of TV)



Example of sparse optimization

min{‖x‖1 : Ax = b}
Basis pursuit: find least 1-norm point on the affine plane
Tends to return a sparse point (sometimes, the sparsest)

LASSO denoises basis pursuit
min

{
‖Ax−b‖2

2 : ‖x‖1 ≤ τ
}

or
min

{
‖x‖1 + µ

2 ‖Ax−b‖2
2

}
or
min

{
‖x‖1 : ‖Ax−b‖2

2 ≤ σ
}

nonlin
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C j(pj)

for j ∈ J: pj ∈P j

∑
j∈J

g j(pj) = Dem ← x
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Computing subgradients: how difficult is it?
1. f (x) = |x |, for n = 1
2. A linear Lasso function,

f (x) = ‖x‖1 + µ

2 ‖Ax−b‖2
2

3. A nonlinear Lasso function, h ∈ C1,

f (x) = ‖x‖1 + µ

2 ‖
(

h(x)−b
)+
‖2

2
4. One of the Lagrangian subproblems,

f j(xk) :=

{
max −C j(pj) +

〈
xk ,g j(pj)

〉
pj ∈P j

5. The max-eigenvalue case
f (xk) = max{y>A(x)y : ‖y‖2 ≤ 1}

What about computing the full ∂ f (xk)?
NSO methods in general are designed
for oracles delivering 1-subgradient only
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f (xk) = max{y>A(x)y : ‖y‖2 ≤ 1}

What about computing the full ∂ f (xk)?

NSO methods in general are designed
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What can be done with the oracle output?
An example of a convex nonsmooth function

∂ f (x) = {g ∈ IRn : f (y)≥ f (x) + g>(y− x) for all y}
= {slopes of linearizations supporting f , tangent at x}

1 oracle call=1 linearization (in magenta)

Linearization bad if oracle output is bad
wrong g can give a bad linearization
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Using oracle subgradients in the stopping test
Algorithms for unconstrained smooth optimization
use as optimality certificate Fermat’s rule

0 = ∇f (x̄)

and generate a minimizing sequence:

{xk}→ x̄ such that ∇f (xk)→ 0 .

If f ∈ C1, then ∇f (x̄) = 0

In NSO things are less straightforward. . .
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Using oracle subgradients in the stopping test
For the absolute value function, f (x) = |x | and

∂ f (x) =


−1 x < 0

[−1,1] x = 0

1 x > 0
Using as optimality certificate the inclusion

0 ∈ ∂ f (x̄)
requires knowing the whole subdifferential!
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Why special NSO methods?
Smooth optimization techniques do not work

0

abs

f (x) = |x |
|∇f (xk)| = 1 , ∀xk 6= 0 ∂ f (0) = [−1,1]

I Smooth stopping test fails:
|∇f (xk)| ≤TOL (↔ |g(xk)| ≤TOL)
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Why special NSO methods?
Smooth optimization techniques do not work
I Finite differences fail

For f : IR3→ IR defined by f (x) = max(x1,x2,x3)
∂ f (0) =?

Forward finite difference f (x+∆x)−f (x)
∆x = (1,1,1)

Central finite difference f (x+∆x)−f (x−∆)
2∆x = (1

2,
1
2,

1
21
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∂ f (0) =unit simplex

Forward finite difference f (x+∆x)−f (x)
∆x = (1,1,1)

Central finite difference f (x+∆x)−f (x−∆)
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1
2 ,

1
2
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Example 9.1, “Instability of steepest descent”
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functional values
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Why special NSO methods?

Smooth optimization techniques do not work

Smooth stopping test fails
Finite difference approximations fail
Linesearches get trapped in kinks and fail
Direction opposite to a subgradient may increase the
functional values
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Looking for sound optimality certificates in NSO
For the absolute value function, f (x) = |x | and

∂ f (x) =


−1 x < 0

[−1,1] x = 0

1 x > 0
Using as optimality certificate the inclusion

0 ∈ ∂ f (x̄)
requires knowing the whole subdifferential!
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What happens with the stopping test?
In nonsmooth optimization the inclusion

0 ∈ ∂ f (x̄)
fails as optimality certificate
I As a set-valued mapping ∂ f (x) is osc:(

xk ,g(xk)∈ ∂ f (xk)
)

:

{
xk → x̄

g(xk)→ ḡ .
=⇒ ḡ ∈ ∂ f (x̄)

I As a set-valued mapping, ∂ f (x) is not isc:
Given ḡ ∈ ∂ f (x̄)

∃
(

xk ,g(xk) ∈ ∂ f (xk)
)

:

{
xk → x̄

g(xk)→ ḡ .///
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What happens with the stopping test?
We need to device a sound stopping test that does
not rely on the straightforward extension of Fermat’s
rule

0 ∈ ∂ f (x̄)

We use instead

ḡ ∈ ∂ε̄ f (x̄) for ‖ḡ‖ and ε̄ small

where the ε-subdifferential contains the slopes of
linearizations supporting f up to ε , tangent at x :

∂ε f (x) = {g ∈ IRn : f (y)≥ f (x)+g>(y−x)−ε for all y}
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The ε-subdifferential

∂ε f (x) = {g ∈ IRn : f (y)≥ f (x) + g>(y− x) −ε for all y}
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The ε-subdifferential

∂ f (x) =


−1 x < 0

[−1,1] x = 0

1 x > 0

For the absolute value function, f (x) = |x |

∂ε f (x) =


[−1,−1− ε/x] x <−ε/2,

[−1,1] − ε/2≤ x1≤ ε1/2,

[1− ε/x ,1] x > ε/2.



The ε-subdifferential

∂ f (x) =


−1 x < 0

[−1,1] x = 0

1 x > 0

For the absolute value function, f (x) = |x |

∂ε f (x) =


[−1,−1− ε/x] if x <−ε/2,

[−1,1] if − ε/2≤ x ≤ ε/2,

[1− ε/x ,1] if x > ε/2.

−ε

2
ε

2



The ε-subdifferential

−ε

2
ε

2

I As a set-valued mapping ∂ε f (x) is osc:(
ε

k ,xk ,g(xk ) ∈ ∂εk f (xk )
)

:


εk → ε

xk → x̄
g(xk )→ ḡ .

=⇒ ḡ ∈ ∂ε̄ f (x̄)

I As a set-valued mapping, ∂ε f (x) is isc: Given ḡ ∈ ∂ε̄ f (x̄)

∃
(

ε
k ,xk ,g(xk ) ∈ ∂εk f (xk )

)
:


εk → ε̄

xk → x̄
g(xk )→ ḡ .
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The ε-subdifferential and bundle methods
Generate iterates so that for a subsequence {x̂k}
I As a set-valued mapping ∂ε f (x) is osc:(

ε̂
k , x̂k , ĝ(xk )∈ ∂εk f (x̂k )

)
:

 ε̂k → ε̄

xk → x̄
ĝ(xk )→ ḡ .

=⇒ ḡ ∈ ∂ε̄ f (x̄)

with ε̄ ≈ 0 and ‖ḡ‖ ≈ 0
I As a set-valued mapping, ∂ε f (x) is isc:

Given ḡ ∈ ∂ε̄ f (x̄) :

∃
(

ε̂k , x̂k , ĝ(xk ) ∈ ∂ε̂k f (x̂k )
)

:

 ε̂k → ε̄

x̂k → x̄
ĝ(x̂k )→ ḡ .



Building up ε-subgradients in bundle methods
You told us

we were going to use subgradient information
provided by a black-box because knowing the full
subdifferential is too much of a requirement.

Now you want to use the ε-subdifferential, an even
larger set!
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The transportation formula

Or how to express subgradients at x i as
ε-subgradients at x̂k



The transportation formula
Consider g i ∈ ∂ f (x i)
The inclusion holds if and only if, for all y ∈ IRn

f (y) ≥ f (x i) + g i>(y− x i)

= f (x i) + g i>(y− x i)± f (x̂k )

= f (x̂k ) + g i>(y− x i)−
(

f (x̂k )− f (x i)
)

= f (x̂k ) + g i>(y− x i ± x̂k )−
(

f (x̂k )− f (x i)
)

= f (x̂k ) + g i>(y− x̂k )−
(

f (x̂k )− f (x i)−g i>(x̂k − x i)
)

= f (x̂k ) + g i>(y− x̂k )−ei(x̂k )

=⇒ g i ∈ ∂ei(x̂k )f (x̂
k)

for ei(x̂k ) := f (x̂k )− f (x i)−g i>(x̂k − x i)≥ 0
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The ε-subdifferential and bundle methods
We collect the black-box

output at past iterations x i , i = 1,2, . . . ,k ,
so that at iteration k we can define a bundle of
information, centered at a special iterate x̂k ∈ {x i}

Bk :=

(
ei(x̂k) = f (x̂k)− f (x i)−g i>(x̂k − x i)

g i ∈ ∂ei(x̂k )f (x̂k)

)

A suitable convex combination

ε
k := ∑

i∈Bk

α
iei(x̂k) and Gk := ∑

i∈Bk

α
ig i

will eventually satisfy the optimality condition!
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Back to Computational NSO

For the unconstrained problem

min f (x) ,

where f : IRn→ IR is convex but not
differentiable at some points, we shall define
algorithms based on information provided by
an oracle or “black box” endowed
with reliable stopping tests



How is the oracle information used?
We look for algorithms based on information provided

by an oracle
endowed with reliable stopping tests

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Subgradient methods

0 Choose x1 and set k = 1.
1 Call the oracle at xk .
2 Compute xk+1 = xk − tkg(xk) for a suitable

stepsize tk > 0.
3 Make k = k + 1 and loop to 1.

Pros and cons of these methods?
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Bundle methods

0 Choose x1, t1 > 0, and set x̂1 = x1, k = 1.
1 Given x̂k , Mk and tk , compute xk+1 and

δk+1 := f (x̂k)−Mk(xk+1)
2 Call the oracle at xk+1. If δk+1 ≤ tol STOP
3 (Descent Rule)

f (xk+1)≤ f (x̂k)−mδk?

{
yes SS: x̂k+1 = xk+1

no NS: x̂k+1 = x̂k

4 Choose a new model and stepsize.
5 Set k = k + 1, loop to 1.



Bundle methods: the power of the descent rule
The serious-step subsequence satisfies the descent rule

f (x̂k+1)≤ f (x̂k )−mδk (DR)

Rearranging terms, for k serious,

mδk ≤ f (x̂k )− f (x̂k+1)

(telescopic) sum yields

(0≤) m ∑
kserious

δk ≤ f (x̂0)− f ∞ for f ∞ := liminf f (x̂k+1)

As long as δk ≥ 0 in (DR) ,

I Either f ∞ =−∞ (problem unbounded below)
I Or f ∞ >−∞, in which case

I δk → 0
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Bundle methods: what about non-serious points?

Without even specifying how iterates xk are
computed, if the descent rule holds for infinitely many
iterates, the subsequence of serious optimality
certificates (δk ) goes to zero (and {x̂k} will be
minimizing).

The above ensures convergence for the
serious subsequence
What about iterates that do not satisfy (DR)?
These are the null steps in the bundle jargon.
Their role is to enrich the model and gain more
information on f , so that eventually an iterate is
accepted as a serious one.
The analysis of the situation when there is a last serious
iterate, x̂ , followed by infinitely many null steps, is related to
the proximal point operator
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A question for you:

Ever heard of the proximal
point mapping?



Answer provided by Jean-Jacques Moreau
The Moreau-envelope of f is a C1,1-smoothing of f

Fµ(x) := min

{
f (y) +

1
2

µ‖y− x‖2
}

•the unique minimizer is the
proximal point mapping pf

µ(x)

•the envelope’s gradient is

∇Fµ(x) = µ

(
x−pµ(x)
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Proximal point algorithm (PPA) (Accel. Nesterov, FISTA)

Given starting point x1 and prox-stepsize t10,

xk+1 = pf
tk (xk)

⇐⇒
xk+1 = arg min f (y) + 1

2tk
‖y− xk‖2

2

I of interest only if computing pf
tk (xk ) is much easier than

minimizing f
I stepsize tk > 0 impacts on the number of iterations (speed)

I optimality certificate δk :=
xk+1− xk

tk
=

pf
tk (xk )− xk

tk
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Proximal point: calculus rules

I separable sum:
f (x ,y) = g(x) + h(y) =⇒
pf

t (x) =
(

pg
t (x),ph

t (y)
)

I scalar factor (α 6= 0) and translation (v 6= 0):
f (x) = g(αx + v) =⇒
pf

t (x) = 1
α

(
pα2g

t (αx + v)− v
)

I “perspective” (α > 0):
f (x) = αg( 1

α
x) =⇒ pf

t (x) = αpg/α

t ( x
α

)



Proximal point: special functions
I + linear term (v 6= 0):

f (x) = g(x) + 〈v ,x〉=⇒ pf
t (x) = pg

t (x− v)
I + convex quadratic term (t > 0):

f (x) = g(x) +
1
2t
‖x− v‖2 =⇒

pf
t (x) = pλg

t (λx + (1−λ )v) for λ =
t

t + 1
I composition with linear term such that A>A = 1

α
I,

(α 6= 0):
f (x) = g(Ax + v) =⇒
pf

t (x) = (I−αA>A)x + αA>
[
pg/α

t (Ax + v)− v
]



Proximal point algorithm: convergence

xk+1 = arg min f (y) +
1

2tk
‖y− xk‖2

2

(DR) holds at all iterations

f (xk+1)≤ f (xk )− 1
2tk
‖xk+1− xk‖2

2

(sharper inequality without 1
2 also holds)

I If arg min f 6= /0 then δk = ‖xk+1− xk‖2/tk → 0
I If ∑k tk → ∞ the sequence is minimizing
I If {tk} bounded, the whole sequence converges to a

minimizer and f (xk )↘min f
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the proximal point subgradient

p = pf
t (x) ⇐⇒ p = arg min f (y) + 1

2t‖y− x‖2
2

⇐⇒ 0 ∈ ∂ f (p) + 1
t (p− x)

Take g(p) := 1
t (x−p) ∈ ∂ f (p) satisfying the OC

Proceeding like in the transportation formula,

g(p) ∈ ∂ε f (x) for ε := f (x)− f (p)−g(p)>(x−p)
= f (x)− f (p)−‖x−p‖2/t

For the PPA, this means that

xk+1 = xk − tkgk for gk ∈ ∂εk+1f (xk)

and εk+1 := f (xk)− f (xk+1)− ‖x
k−xk+1‖2

tk
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PPA: an implicit ε-subgradient descent method

xk+1 = xk − tkgk for gk ∈ ∂εk+1f (xk)

and
εk+1 := f (xk)− f (xk+1)− ‖x

k−xk+1‖2

tk

note 4: the method is still implicit, check εk+1

What if pf
t is not computable?

Can we make the method implementable?

YES!
Use the bundle ideas
to compute (ap)proximal points
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Bundle methods prove most useful

In situations
I when the objective function is not available explicitly

and/or

I when we do not have access to the full subdifferential

and/or

I when calculations need to be done with high precision



Bundling to approximate the p

WANT: p = pf
t (x̂) = arg min f (y) +

1
2t
‖y− x̂‖2

2

or, equivalently, finding p such that 1
t (x̂−p) ∈ ∂ f (p)

HAVE: M, a model of f for which we do have full
knowledge of the subdifferential (recall note for future use):

q = pM
t (x̂) = arg minM(y)+

1
2t
‖y− x̂‖2

2 (QP)

or, equivalently, finding q such that 1
t (x̂−q) ∈ ∂M(q)

Now the explicit inclusion can be solved!

G :=
1
t

(x̂−q) = ∑
i

α
ig i

is a convex combination of active subgradients,
computed for free when solving (QP)
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Bundling to approximate the p

Theorem[CL93] Suppose the models satisfy
I Mk(y)≤ f (y) for all k and y
I Mk+1(y)≥ f (qk) + g(qk)>(y−qk)

I Mk+1(y)≥Mk(qk) + Gk>(y−qk)

If 0 < tmin ≤ tk+1 ≤ tk , then

lim
k→∞

qk = x̂ and lim
k→∞

Mk(qk) = f (x̂)



the bundle subgradient
q = pM

t (x̂) = arg minM(y)+
1
2t
‖y− x̂‖2

2 (QP)

Take G = 1
t (x̂−q) ∈ ∂M(q) satisfying the OC

Proceeding like in the transportation formula,

G ∈ ∂ε f (x̂) for ε := f (x̂)−M(q) − G>(x̂−q)
= f (x̂)−M(q) − ‖x̂−q‖2/t
= δ − t‖G‖2

For the bundling procedure, this means (now q = xk+1)

xk+1 = x̂k − tkGk for Gk ∈ ∂εk f (x̂k)

and δk = εk + tk‖Gk‖2 all explicit values, computed
when solving (QP)
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Illustration of oracles and models
The cutting-plane model is not the only one satisfying
the [CL93] conditions
I Mk(y)≤ f (y) for all k and y
I Mk+1(y)≥ f (xk+1) + gk+1>(y− xk+1)
I Mk+1(y)≥Mk(xk+1) + Gk>(y− xk+1)

We can use
I Mk+1(y) = max

{
f i + g i>(y− x i) : i ≤ k

}
I Mk+1(y) = max

{
f i + g i>(y− x i) : i ∈ I(xk+1)

}
I Mk+1(y) =

max
{

f k+1 + gk+1>(y− xk+1),Mk (xk+1) + Gk>(y− xk+1)
}

I Anything in-between
Mk+1(y) = max

{
f i + g(qi)>(y− x i) : i ∈Bk

}
This allows to keep controlled the (QP) size
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There are many different models
CP models are the most straightforward ones. There
are other possibilities, that exploit structural
knowledge

For x ∈ IRn, given matrices A� 0, B � 0,

f (x) =
√

x>Ax + x>Bx

is called the “half-and-half” function
For n = 2, it corresponds to

f (x1,x2) = a|x1|+ bx2
2

The oracle information for f can be available in
different forms
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Models for the half-and-half function
STRUCTURE f (x)

none
√

x>Ax + x>Bx

sum f1(x) + f2(x)
f1(x) =

√
x>Ax

f2(x) = x>Bx
f2 is smooth

compo
sition

(h ◦ c)(x)

c(x) = (x ,x>Bx) ∈ IRn+1

c is smooth

h(C) =
√

C>1:nAC1:n + Cn+1

h is sublinear
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Models for the half-and-half function
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hk ,gk ∈ ∂h(ck)
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Take away messages
I PPA has good properties for minimizing convex nonsmooth

functions
I If computing exactly the prox at each iteration is too

demanding, a bundling approach can be put in place
I the theory in [CL93]] allows for great generality in how the

approximation is done
I Bundle methods enter into play to decide when the

approximal point is sufficiently good (DR).
I If rough approximations without optimality certificate are

enough: SG
I CP methods are more reliable (stopping test) but LP grows

indefinitely, need bounding set X , and can be unstable
I Bundle methods stabilize CP, have reliable stopping test,

solve one QP of controllable size per iteration

Beware all of the above depends on having exact oracle
information
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