
Post-doctoral Research Project
Title: Wave turbulence for dispersive PDEs

Wave turbulence theory is a kinetic theory describing the statistical physics of (weakly) nonlinear
systems of random wave equations out of thermal equilibrium. It is the extension of Boltzmann’ kinetic
theory for dilute gases to nonlinear dispersive systems and it ows its name (Wave turbulence) to the
description it provides of spectral energy cascades for nonlinear waves, much like what Kolmogorov’s
theory of hydrodynamic turbulence does. The aim of wave turbulence is to understand the effective
(macroscopic) behavior and energy-dynamics of systems where many waves interact nonlinearly at the
microscopic level according to some dispersive equations, through the derivation of some kinetic wave
equation satisfied by the energy densities.

The kinetic wave equation has been formally derived in different physical contexts such as water waves,
plasma models etc. (see [8] for a textbook treatment of the subject), in the limit where the number of
interacting waves goes to infinity and the strength of their interaction goes to 0.

From a mathematical standpoint, the rigorous derivation of an irreversible kinetic equation from a
reversible nonlinear dispersive PDE remains an open problem in many cases. The only results known
at present concern the derivation of the kinetic equation for the cubic nonlinear Schrödinger equation
(NLS) (see the celebrated result of Deng-Hani [3] and references therein to previous partial results)
and for a stochastic KdV-type equation by Staffilani-Tran [9]. The general approach is the following:
given a certain weakly nonlinear dispersive equation, set on a large d-dimensional torus of size L
and where the strength of the nonlinearity is represented by some small parameter ε, one considers a
periodic solution u(t, x) with well-prepared random initial data (its Fourier coefficients are independent,
identically distributed normalized Gaussian variables) and looks at the evolution of the expectation of
the Fourier-space mass densities E|û(t, k)|2, where k ∈ L−1Zd. These are the quantities that completely
determine the law of a family of jointly gaussian variables and hence the quantities to look at if one
believes in the propagation of chaos (the initial independence and gaussianity of the Fourier coefficients
survives over time in the limit L → ∞). First, one has to construct the solution u(t, x) to the starting
problem on some time interval [0, δT ], where T = T (L, ε) > 0 is to be determined and δ > 0 is possibly
small but independent of ε, L. This is done using the following ansatz

u(t, x) =
∑
n≤N

un(t, x) + v(t, x)

where u0 is the linear evolution, un are iterated self-interactions of the linear solution u0 and v is some
remainder term whose existence is to be proven. The size N of the decomposition usually has to grow
logarithmically with L to ensure a good control on the error term v. Second, one has to study the
limit (the order with which one takes the limit is fundamental)

lim
L→∞
ε→0

E|û(tT, k)|2, t ∈ [0, δ]

and prove that E|û(tT, k)|2 is well approximated by the solution of an effective equation (heuristically
obtained beforehand).

A major role in deriving the effective dynamics of the correlations associated with a dispersive PDE
(or system of dispersive PDEs) is that of resonances. In the case of cubic (NLS) studied in [3], the set
of exact resonances is given by

E =

{
(k1, k2, k3) ∈

1

L
Zd

∣∣∣∣ ω(k1 − k2 + k3)− ω(k1) + ω(k2)− ω(k3) = 0

}
and the set of quasi-resonances by

Q =

{
(k1, k2, k3) ∈

1

L
Zd

∣∣∣∣ 0 ̸= |ω(k1 − k2 + k3)− ω(k1) + ω(k2)− ω(k3)| ≤ ε2
}
,
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where ω(k) = |k|2 is the dispersive relation for the Schrödinger equation, L ≫ 1 is the size of the box
on which the equation is considered and ε ≪ 1 is the strength of the nonlinear interaction. If the set of
quasi-resonances dominates that of exact resonances, the effective dynamics one obtains is said to be
of kinetic type. If instead the exact resonances prevail over quasi-resonances, the effective dynamics
is discrete (a third regime where the “size” of the above sets is comparable is known in physics as
mesoscopic regime). The set E always contains trivial resonances k1 = k2 or k2 = k3, but for the
Schrödinger equation their contribution to the dynamics cancels out due to U(1) invariance. The right
set to consider, after a renormalization argument, is instead

Ẽ =

{
(k1, k2, k3) ∈

1

L
Zd

∣∣∣∣ ω(k1 − k2 + k3)− ω(k1) + ω(k2)− ω(k3) = 0 ∧ k2 ̸= k1 ∧ k2 ̸= k3

}
and such set, under appropriate scaling laws relating the parameters L and ε, is never dominant
compared to Q. The effective dynamics of the correlations is hence a kinetic equation and its rigorous
derivation is obtained by Deng-Hani in [3] in the time-interval [0, Tkinδ] where Tkin = ε−2 is the kinetic
time and δ > 0 is independent of L and ε.

In the case of generic systems of dispersive equations, there is no reason to believe that there are
enough symmetries to ensure the effective dynamics of the correlations to be of kinetic type. Instead,
the correlations should behave more like in the discrete wave turbulence or finite box effect regime
(see for instance [4, 5, 6, 10]), because trivial (exact) resonances do not cancel each other and play a
significant part in the effective dynamics. Such type of behavior has been showed to arise in a recent
work by de Suzzoni-Stingo-Touati [2], in which they investigate a quadratic system of two Klein-Gordon
equations. After a normal form reduction that “transforms” the nonlinear interaction from quadratic
to cubic, the authors rigorously prove that a non-trivial effective dynamics already emerges at times
of order α−1, where α is the strength of the new cubic nonlinearity. The analysis uses, as common
in the literature concerning these problems, a precise diagrammatic representation of the solution to
the Klein-Gordon system, which in [2] is adapted to the normal form procedure and to the Klein-
Gordon dispersive relation. This dispersive relation forbids, as opposed to the Schrödinger equation,
the use of number theoretic results. Instead, the authors rely on a low/high frequency analysis at
the diagrammatic level for which they introduce new combinatorial tools, which is a new approach
compared to previous works (see the celebrated result of Lukkarinen-Spohn [7] and and the work on
inhomogeneous setting by Ampatzoglou-Collot-Germain [1]) where the frequency analysis is performed
at the level of the equation.

Following the results of [2] and the methods developed therein, a very interesting project for a post-
doctoral fellow would be that of studying other dispersive models (or rather systems of dispersive
models) that are not phase invariant and to rigorously prove the emerge of a discrete effective regime
as describe above.
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