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Abstract

Game theory studies interactions between agents with specific aims,
be they rational actors, genes, or computers. This course is intended
to provide the main mathematical concepts and tools used in game
theory with a particular focus on their connections to learning and
convex optimization. The first part of the course deals with the basic
notions: value, (Nash and Wardrop) equilibria, correlated equilibria.
We will give several dynamic proofs of the minmax theorem and
describe the link with Blackwell’s approachability. We will also study
the connection with variational inequalities.



The second part will introduce no-regret properties in on-line learning
and exhibit a family of unilateral procedures satisfying this property.
When applied in a game framework we will study the consequences
in terms of convergence (value, correlated equilibria). We will also
compare discrete and continuous time approaches and their analog
in convex optimization (projected gradient, mirror descent, dual
averaging). Finally we will present the main tools of stochastic
approximation that allow to deal with random trajectories generated
by the players.



Part B

ALGORITHMS AND LEARNING



B.2 No-regret procedures and stochastic approximation

This section relies in part on :

Lectures on Dynamics in Games, (2008) Université Paris 6,
unpublished lectures notes.

Tutorial on learning, (2005) Stochastic Methods in Game Theory,
IMS, NUS, Singapore.
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No-regret (ll) in learning, games and convex
optimization

The purpose of this section is to underline the links between some
no-regret algorithms used in on-line learning, games and convex
optimization and to compare the continuous and discrete time
versions.



1. Introduction

The general framework is as follows:

V is a normed vector space, finite dimensional, with dual V* and
duality map (V*|V),

X is a non-empty compact convex subset of V.

We study properties of algorithms that associate to a process
{u, € V*,t > 0}, a procedure {x, € X, > 0}, where x, is function of the
past {(x;,us),0 <s <t}

The process corresponds to the observation, the procedure to the
induced trajectory.



The adequation of {x,} to {«,} is measured by a regret function
defined on X by:

Ri(x) = /Ot<u5]x—xs>ds

and one will study procedures satisfying the no-regret condition:

supR,(x) < o(t).

xeX
Similarly in discrete time, given {u,,} and {x,,}, m € N, with {x,, }
depending on {xy,uy,...,xXu—1,un-1}, ONe defines:

n

Ra(x) = Z (tm|x — Xm)
m=1
and requires:

supR,(x) < o(n).
xeX



A) We compare the performance of the algorithms in terms of the
regret under three (increasing) assumptions:

() general case: {u,} is a bounded measurable process in V*,

(1) closed form: u, = ¢(x;) for a continuous vector field ¢ : X — V*,
(1) convex gradient: u, = —Vf(x,), f €' convex function : X — R,
(with similar properties in discrete time).

B) We consider three different procedures:
a) Projected dynamics (PD),

b) Mirror descent (MD),

c) Dual averaging (DA).



C) We analyze the relations between the continuous and discrete
time processes, in particular in terms of speed of convergence to 0 of
the average regret.

D) We also study the convergence of the trajectories of {x;} or {x,}
(in classes (1) and (111)).



Framework (1) corresponds to the usual model of on-line learning
where the agent observes {u,,s < r} and chooses x;.

Recall that if V = RX and the agent selects a component k; € K at
random, then X = A(K), x, is the law of k, and the regret (ll) is
expressed in terms of conditional expectation.

Note that since no hypothesis is made on the process u;, no
prediction makes sense but the no-regret condition expresses a
desirable a-posteriori property.



The notion of regret appears in Hannan, 1957 [27], Blackwell, 1956
[14] in a game theoretical set-up. Algorithms and properties are
studied in this spirit in Foster and Vohra, 1993 [22], Fudenberg and
Levine, 1995 [25], Foster and Vohra, 1999 [23], Hart and Mas-Colell,
2000 [29], Lehrer, 2003 [41] , Benaim, Hofbauer and Sorin, 2005 [11],
Cesa-Bianchi and Lugosi, 2006 [18], Viossat and Zapechelnyuk,
2013 [82], ... among others.

Similar tools and properties occur in statistics and in the learning
community: Vvok, 1990 [83], Cover, 1991 [20], Littlestone and
Warmuth, 1994 [43], Freund and Shapire, 1999 [24], Auer,
Cesa-Bianchi, Freund and Shapire, 2002 [4], Cesa-Bianchi and
Lugosi, 2003 [17], Stoltz and Lugosi, 2005 [73], Kalai and Vempala,
2005 [36], ...



The next two frameworks (1) and (lIl), describe more specific cases
where the observation u; is a function of the action x;.

Famework (ll) closed form is relevant for game dynamics and
variational inequalities.

Consider a strategic game with a finite set of players I, where the
equilibrium set E is the set of solutions x € X of the following
variational inequalities:

(' () =y >0, WeX Viel

Here X' C V' is the strategy set of player i, X =[], X, and ¢’ : X — V**
is her “evaluation” function.

For each player i, the reference process is ui = ¢/(x;) which, as a
function of x;, is determined by the behavior of all players.



In a concave €' game with payoff F, the observation of player i is the
gradient w.r.t. x; of her payoff function F' : ui = ¢'(x;) = V;Fi(x,).

Note that the overall global dynamics of {x,} is generated by a family
of unilateral procedures since for each i, x! depends on (u',x’) only.
In particular for each player i, the knowledge of ¢/,j # i is not
assumed.

Thus for each player individually the situation is like (l) general case,
while the private observations of the players are linked via x;.



We will analyze the consequences on the process {x;} assuming only
that each player uses a procedure satisfying the no-regret condition
(2) or (3).

Obviously the (global) algorithm associated to g = {g'} will also share
the no-regret property since:

LA . . . .
/ (&' (xs)|x" = xt)ds < o(1), Vx' e X', Viel
0

implies:
t
/ (g(xs)|x —x5)ds <o(t),  VxeX,
0

but in addition it is "decentralized" in the sense that x' depends upon
g only.



Framework (Ill) covers the case of convex optimization where the
observation, after the choice x;, is the gradient of the (unknown)
convex function and u; = —Vf(x;).

The research in this area is extremely active and very wide; it links
basic optimization algorithms, Polyak, 1987 [59], Nemirovski and
Yudin, 1983 [52], Nesterov, 2004 [54], to on-line procedures, see e.g.
Zinkevich, 2003 [86].



Recent books include:

BUBECK S. (2015) [15] Convex optimization: Algorithms and
complexity, Fondations and Trends in Machine Learning, 8, 231-357.
HAzAN E. (2011) [31] The convex optimization approach to regret
minimization, Optimization for machine learning, S. Sra, S. Nowozin,
S. Wright eds, MIT Press, 287-303.

HAzAN E. (2015) [32] Introduction to Online Convex Optimization,
Fondations and Trends in Optimization, 2, 157-325.

HAzAN E. (2019) [33] Optimization for Machine Learning ,
https://arxiv.org/pdf/1909.03550.pdf.

SHALEV-SHWARTZ S. (2012) [65] Online Learning and Online
Convex Optimization, Foundations and Trends in Machine Learning,
4, 107-194.



Related algorithms have been developped in Operations Research
(transportation, networks), see e.g. Dupuis and Nagurney, 1993 [21],
Nagurney and Zhang, 1996 [51], Smith, 1984 [66].

Note that each community (learning, game theory, optimization) has
its own terminology and point of view.

One of the aims of the current section is to clarify the relations
between several approaches and results and unify the analysis.

In particular we will show that few basic principles are in use and we
will underline the analogy between continuous and discrete time.



Section 1.2 is devoted to the closed form framework (l1) and explores
the links between no-regret, solutions of variational inequalities and
convex optimization.

Section 1.3 deals with continuous time dynamics.

After introducing level functions, we describe the three algorithms
(PD, MD, DA), prove that they satisfy the no-regret property and
compare their performances.

Section 1.4 is the discrete time analog of Section 3.

Section 1.5 considers basically framework (Ill) under a regularity
hypothesis on the convex function f.

Concluding comments are in Section 1.6.



2. Basic properties of the closed form
Assume that the procedure satisfies the no-regret property (2) or (3).

We describe here some relations with variational inequalities when
the observation process has a closed form : u = ¢ (x).

Notation 1.1
NE(¢) is the set of solutions, in X, of the variational inequality:

(p(x)ly—x) <0,  VyeX. (4)

If ¢ is the evaluation function in a game, NE(¢) corresponds to the set
of equilibria.



A first property deals with convergent trajectories {x,}.

Lemma 1.1
If ¢ is continuous and x; — x, then x € NE(¢).

Proof:
Since R,(y) = [ (¢ (xs)|y — x;)ds:

ROV ooy . wex, ®
and R,(y) < o(r) implies x € NE(¢). n

In particular, if x is a stationary point for the discrete or continuous
time procedure, then x € NE(¢).



Notation 1.2

SE(¢) is the set of solutions, in X, of the variational inequality:

(9)ly—x <0,

Notice that SE(¢) is convex.

Clearly one has:
Lemma 1.2

Ifx* € SE(¢), then R,(x*) >0 for all t > 0.

Vy e X.



Recall:
¢ is dissipative if it satisfies:

(0(x)—9()x—y) <0,  VxyeX
If ¢ is dissipative, then :
NE(¢) C SE(¢)
and if ¢ is continuous the reverse inclusion is satisfied:
SE(¢) C NE(9).

If NE(¢) = SE(¢) we will also use the notation E(¢) for this set.



Define the time average trajectories :

1 t
X =— [ xyds and Xp=— )Y Xm.
t t/O S n I’lZ m

Lemma 1.3
If ¢ is dissipative, the accumulation points of {x,} or {x,} are in SE(¢).

Proof:

B0 2 o= 2 1 [(00l—) = (00—

t t.Jo

Hence under (2) or (3) an accumulation point % of {x,} will satisfy
(p()ly—3%) <0. -

This result implies the non-emptiness of SE(¢) for dissipative ¢.
In particular the minmax theorem (in the %! case) follows from the
existence of no-regret procedures.



Class (lll): convex gradient.

Since u; = —Vf(x,) with f €' convex, this corresponds to a specific
case of dissipative and continuous vector field ¢, hence:
SE(¢) = NE(¢) = E = argminy f.

Use that:
(VF()ly—x0) < f(y) —f(x)

to obtain with u, = —Vf(x,) in (1):
/ (%) —f()]ds < / (=VF(x,)ly—x;)ds = Ry(y)

which implies by Jensen’s inequality:

<1 [l —sonas < B0, ®)

Similarly in discrete time with u,, = —Vf(x,,):

nlf (X,) —f(y)] < Zlf(xm i (Vf () [xXm —y) = Ru(y)-

m=1



In particular one obtains:

Lemma 1.4

i) The accumulation points of {x,} or{x,} belong to E.

i) Ift — f(x;) (resp. n— f(x,)) is decreasing, the accumulation points
of {x;} or{x,} belong to E.

Note that i) is a particular instance of Lemma 1.3.



3. Continuous time

We describe in this section three procedures in continuous time that
satisfy the no-regret property. Their discrete time counterparts will be
analyzed in the next section.

As usual, discrete time dynamics are easier to describe but their
mathematical properties are more difficult to establish. This explain
why we choose to start with the continuous time versions.

In addition a very useful tool in the form of a level function is available
in this set-up and we start by analyzing it.



3.1 Level functions and their properties

Definition 1.1
P:R* x X — R is a level function (for {u;,x,}), if P(t;y) is bounded
and satisfies:

d
(U, x; —y) > EP(t;y), Vi€ RT,Vy € X. (9)

Lemma 1.5

If there exists a level function, R, is upper bounded.
Hence: R,(y)/t < O(1/1).

Proof:

Riy) = /0t<”S|y —x5)ds < P(0;y) — P(1:y) < P(0:y).

u
Hence the existence of a level function implies the no-regret property.



Lemma 1.6
Consider class (11).
Assume y* € SE(¢), then t — P(t;y*) is decreasing.

Proof:

S < (9) 5 —y) 0.

Thus a level function evaluated at a point in SE(g) is a weak
Lyapounov function.



Lemma 1.7
Consider class (Ill).
If {x,} is a descent procedure (meaning that %f (x;) <0), then:

E(ty) = 1(f () —f () + P(5;y)

is decreasing, for all y € X.

Proof:
CBEY) = f0) ~F0) 41 )+ ()
JGa) =f () +{Vf (), y —x1)

0

ININ

We recover the fact that the accumulation points of {x,} are in
E = argminy f and that the speed of convergence of f(x;) to minf is

o(1/1).



3.2. Positive correlation

Given a dynamics, f decreases on trajectories if:

dff Xt) Vf Xt ‘xt>
The analogous property for a vector field ¢ is:

(¢ (xo)|xr) > 0.

In the framework of games, a similar condition was described in
discrete time as Myopic Adjustment Dynamics, Swinkels, 1993 [76] :
if x| #xi, then H'(x!, ,x,") > H'(x},x, 7).

The corresponding property in continuous time corresponds to
positive correlation, Sandholm, 2011 [61]:

i £ 0= (¢'(x,),x)) > 0.

The use of this notion in potential games is a follows:



Proposition 1.1

Consider a game I'(g) with potential function W.

If the dynamics satisfies positive correlation, then W is a strict
Lyapunov function.

All o-limit points are rest points.

Proof:
Let V; = W(x;) for > 0. Then:

V= (VW(x,)|x;) = Z (VW (x,) |15 Zu f(x,) i) > 0.

i€l i€l

since ¢' = Vigi. Moreover, (¢'(x;)|i) = 0 holds for all i if and only if
x', — 0

One concludes by using Lyapunov’s theorem (e.g. [34, Theorem
2.6.1)). n



This result is proved by Sandholm, 2001 [60] for his version of
potential population game, see extensions in Benaim, Hofbauer and
Sorin, 2005 [11].

A similar property for fictitious play in discrete time is established in
Monderer and Shapley,1996 [49].

We will show that this property holds for the dynamics defined below.



We now introduce and study three dynamics:

- Projected dynamics (PD),
- Mirror descent (MD),
- Dual averaging (DA).

In each case we first define the dynamics, then control the values of
the regret by exhibiting a level function and finally study the
trajectories for class (II) and ().



3.3 Projected dynamics

We assume in this subsection that V = V* is an Euclidean space with
scalar product denoted by (,).

Dynamics

The projected dynamics (PD), which is the continuous time analog of
the generalization of the Projected Gradient Descent, Levitin and
Polyak, 1966 [42], Polyak, 1987 [59], see also Section 4.1, is defined
by x, € X satisfying:

(uy — X,y —x) <0, VyeX. (10)

which is:
X = HTX(x,)(ul) (11)

since Tx(x;) is a cone.



Values

Let: |
V(£:y) = 3k —y[*, yex.

Proposition 1.2
V is a level function.

Proof:
One has: J

EV(Z;y) = (%, X —y) < (U, X, —y)
by (10).

Thus the properties of section 3.1 hold.



Trajectories

e Consider class (1) : u, = ¢ (x;).

Proposition 1.3

Assume ¢ dissipative.
Then {x,} converges to a point in SE(¢).

Proof:

- {x,} is bounded hence has accumulation points.

- The limit points of {x;} are in SE(¢) by Lemma 1.3.
- |lx; — y*|| converges when y* € SE(¢) by Lemma 1.6.
Hence using Opial’'s lemma,1967 [57], which states:

In an Hilbert space, if for any weak accumulation point %
of {x;}, (resp. {x;}), ||x; — || has a limit as ¢ — o,
then {x;} (resp. {x,}) weakly converges. (13)

it follows that x, converges to a point in SE(¢). L]



Lemma 1.8
Positive correlation holds.

Proof:

(@ (xr), ) = [l

since (u; —;,%) =0 by (11) and Moreau’s decomposition, Moreau,
1965 [50]. "



o Class (IIl) : u, = —Vf(x,).

Lemma 1.9

i) {x;} converges to a point in E.

ii) f (x;) decreases to minf with speed O(1/t).

Proof:

i) Both Lemma 1.4 or Lemma 1.7, and Lemma 1.8 imply that the
accumulation points of {x,} are in E.

Then using Lemma 1.6, Opial’s Lemma (13) applies.

ii) Follows from lemma 1.7.



We assume in this subsection that V is an Hilbert space with scalar
product (,) and that X C V is non-empty convex and closed.

The results of Section 2 and 3.1 extend while dealing with weak
accumulation points.

e Consider class (Il)
Lemma 1.10
Assume SE(¢) # 0. Then the trajectory {x,} is bounded.

Proof:
By lemma 1.6, for y* € SE(¢), V(t;y*) is decreasing.



In particular this implies the following convergence result:

Proposition 1.4

Assume SE(¢) # 0 and ¢ dissipative.
Then {x,} converges weakly to a point in SE(¢).

Proof:

- {x;} is bounded by Lemma 1.10 hence has weak accumulation
points.

- The weak limit points of {x;} are in SE(¢) by Lemmapro1.3.

- |lx —y*|| converges when y* € SE(¢) by Lemma 1.6.

Hence by Opial’s lemma (13), x; converges weakly to a point in

SE(g9).

Recall that if g is dissipative and X is bounded, SE(¢) # 0 by Lemma
1.3.



e Consider class (lll).

Proposition 1.5

Assume E # 0.

i) {x.} weakly converges to a point in E.

ii) f (x;) decreases to minf with speed O(1/t).

Proof:

i) - {x/} is bounded by Lemma 1.10 hence has weak accumulation
points.

- Both Lemma 1.4 or Lemma 1.7, and Lemma 1.8 imply that the weak
accumulation points of {x,} are in E. Then using Lemma 1.6, Opial’'s
Lemma (13) applies.

ii) Follows from lemma 1.7. n

Note that if X is bounded, E # 0 by Lemma 1.3.



3.4 Mirror descent : differential/incremental approach

We study here the continuous version of the extension of the mirror
descent algorithm studied in convex optimization, Nemirovski and
Yudin, 1983 [52], Beck and Teboulle, 2003 [6], see also section 4.2.

The assumptions are:
H is a strictly convex, ¢! function from V to RU {+co}.
X C V is nonempty, compact, convex and X C domH.

The continuous time procedure miror descent (MD) satisfies x, € X
with:

d
(u,—EVH(x,)|y—x,> <0, WeX. (14)

The previous analysis of Section 2.2 corresponds to the Euclidean
case with: .
H(x) = 5 |l



Recall that the Bregman distance associated to H is:
Du(y,x) = H(y) = H(x) = (VH(x)|y — x) (= 0).
Values

The use of the Bregman distance is the following:

Proposition 1.6
P(t;y) = Du(y,x) is a level function.

Proof:
Note the relation:

d
EDH(yaxt) = —<VH(x,)|)'C,> - E dt

so that (14) implies:

d
EDHO)vxl‘) < (uflx: —y).

Hence the properties of section 3.1 apply.

(15)

L TH)y—x) = (LVH@) - ) (16)



Interior trajectory

The use of a specfic function H adapted to X, with domH = X, H ¢>
onintX and ||VH(x)|| — +e- as x — dX allows to produce a trajectory

that remains in intX.

In this case (14) leads to an equality:

d
EVH(XI) = Uy
thus:

t
VH (x;) :/ usds
0
or, with H* being the Fenchel conjugate of H:
t
X = VH*(/ uyds)
0

and then:
.)-Ct = VZH(XI)_IMI.

V2H(x) induces a Riemannian metric, see Alvarez,

2004 [1], Mertikopoulos and Sandholm, 2018 [47].

(18)

(19)

(20)

(21)
Bolte and Brahic,



Lemma 1.11
Positive correlation holds.

Proof :

(0 (x) ) = (9(x))|V?H (x;) " ¢ (x1)) > 0.



Consider now class (lll).
By Lemma 1.4 the accumulation points of {x;} are in E.

To prove convergence one introduces the following :

Hypothesis [H1]: if ¥ — y* € S then Dy (y*,7) — 0.

For example H is L-smooth (see e.g. Nesterov, 2004 [54] Section
1.2.2.) and then:

L
0< Dp(x,y) < 5 lx—y|*

Hypothesis [H2]: if Dy (y*,z5) — 0,y* € S then X — y*.
For example H is B-strongly convex (see e.g. Nesterov, 2004 [54]
Section 2.1.3.) and then:

B

Dy(x,y) > 2 x =yl



Proposition 1.7
Consider class (). If H is smooth and strongly convex, {x;}
converges weakly to some x* € E.

Proof:

Let x* be an accumulation point of {x,}. Then x* € E by Lemma 1.4
and thus Dy (x*,x,) is decreasing by Lemma 1.6 and Proposition 1.6.
Since this sequence is decreasing to 0 on a subsequence x;, — x* by
[H1], it is decreasing to 0, hence by [H2] x; — x*. n



3.5. Dual averaging: integral/cumulative approach

We consider here the continuous version of the extension of dual
averaging, Nesterov, 2009 [55], see also section 4.3.

We follow the analysis and results in Kwon and Mertikopoulos, 2017
[39].

Dynamics

The assumptions are :

h is a bounded strictly convex I.s.c. function from V to RU {+oo} with
domh = X # () convex compact.

Let h*(w) = sup,.y (w|x) — h(x) be the Fenchel conjugate. h* is
differentiable since h is strictly convex.



Introduce :

t
U, = / uzds
0

and let the dual averaging (DA) dynamics be defined by:
x; = argmax{(U;|x) — h(x); x € V} = argmax{(U;|x) — h(x); x € X}.

The dynamics can be written as:

x = Vh*(U,) € X. (22)




Values
Define, for y € X:
W(t;y) = h*(Ur) — (Uily) +h(y) (23)

which corresponds to the Fenchel coupling between the cumulative
input U, and a reference point y.

Proposition 1.8
W is a level function.

Proof:
W(t;y) > 0 by Fenchel inequality.
Use that: J
Eh*(Ut) = (w|Vh*(Uy)) = (wx:) (24)

by (22), thus:

d
aW(I;y) = (us|x; —y).



In particular one has:

Ri) = [ Gl —u)ds = W(0:3) ~ W(ts3) < [ inf h+-h()] < rc(h) (25)
with rx(h) = supy h(x) —infx h(x).
Note that due to the integral formulation of the dynamics (x; as a
function of U, rather than x, as a function of «,) the level function is

expressed through the dual space, however properties of section 3.1
applies as well.



Trajectories

Lemma 1.12
Positive correlation holds.

Proof:
(0 (x0) ) = (9 (x)[V>R* (Uy) ()
with u; = ¢ (x;).

Hence in class (Ill), using Lemma (1.4) the accumulation points of
{x;} arein E.



Remark

In the interior smooth case both dynamics and level functions of
sections 3.3 (MD) and 3.4 (DA) are the same, since one has:

X = Vh*(Ut), Vh(x,) = Ut, h*(Ut) +h(xt) = <U,|x,>
and

Dy(y,x:) = h(y) —h(x:) — (Vh(x:)|y — x;)
h(y) +h*(Up) = (Ulxe) = (Vh(x:) [y — x1)
= h(y)+n"(U) = (Uily)

)_
)_



3.5 Comments on the continuous dynamics framework

1) One obtains the existence of a level function and same speed of
convergence of the no-regret quantities in classes (1), (Il) or (lll) :
O(%), which is optimal Nesterov, 2004 [54].

2) Hence by Section 2 the accumulation point of the average {x,} in
class (Il) with ¢ dissipative are in SE(¢).

3) In addition weak convergence of the average {x,} holds in class (ll)
with ¢ dissipative, under (PD), via Opial’s lemma.

The linear aspect of the derivative of the level function seems crucial
to obtain this property.

4) Similarly weak convergence of {x;} in case (lll) holds for (PD), and
(MD) with adapted penalization function H.

5) The accumulation points of {x,} are in E in case (Ill) under (DA) .



6) For vector fields ¢ with potential W, W(x,) is decreasing in (PD)
and (DA), and under conditions on H for (MD).
7) In the framework of games the function:

h(x) = ZxPLogxp

pES

defined on the simplex X = A(S) leads (via (MD) or (DA) ) to the
replicator dynamics on int X , Taylor and Jonker, 1978 [77], Hofbauer
and Sigmund, 1998 [34], Sorin, 2009 [67], 2020 [69].

The corresponding Riemannian metric is introduced in Shahshahani,
1979 [64].

Recall that h(x) = 3||x*|| leads to the local/direct projection dynamics,
for a comparison, see Lahkar and Sandholm, 2008 [40], Sandholm,
Dokumaci and Lahkar, 2008 [63].

Note that the replicator dynamics is the continuous version of the
multiplicative weight algorithm, Littlestone and Warmuth, 1994 [43],
Vovk, 1990 [79], Sorin, 2009 [67], 2020 [69].



4. Discrete time: general case
We consider now discrete time algorithms.

Remark that the dynamics depends on an additional parameter, the
step size.



4.1. Projected dynamics

Recall that V is Euclidean and let m(X) denote the diameter of X.
Assumption:
[t < M,¥m € N.

Dynamics

The standard discrete dynamics (PD) (Gradient projection method in
class (Ill), Levitin and Polyak, 1966 [42], Polyak, 1987 [59]) is given
by:

1
X1 = argmaxy{ (um, x) —Wllx—xmllz}, (26)

with n,, > 0 decreasing, which corresponds to:

Xmy1 = Iy [xm + nmum] . (27)



The variational characterization is x,,+ € X satisfying :
<Xm+77m“m_xm+l7y_xm+l> SO? \V/yGX,

which is :
Xm+1 — Xm
(um -

7y_erl+1>S07 VyEX,
N

and leads to the continuous time equation (10) as 1, — 0.



Values

Recall that :

Proposition 1.9

1 MZn

< — L R .
Rn(X)_ znnm(X) + 2 mgl nm

Hence withn, =1/\/n:
R (x) < O(v/n).
Proof:

Let X1 = x (Ymy1) With Y1 = X + Nt
So that:

2N (b, X — Xm) = 2(Vmt1 — Xms X — Xim)
= |ymet —Xml* + [|x = xm]1> =[x = Y1 [I*-



Note that for x € X, (28) implies |[y,+1 —x||*> > ||xms1 — x||* hence:
200 it X = Xm) < Mt |* - [ =6 * = e = 1 ||

which is the discrete analog of Proposition 1.2 .
Thus:

1
(s X = 2m) < %’" e | + 3 (e =200 = [l =1 |]-
m

It follows that:

n
Ri(x) = Y (tm,x—xm)
m=1
1 2
-l -

n

Z an 217 _
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Thus, with m(X) being the diameter of X:
1 M? &
< 2
R,(x) < —2nnm(X) + > ,112:"1 N,

and the choice of n,, = ﬁ gives:
Ry (x) < Vn[m(X)* + M?).



Trajectories

Consider class (ll).

Lemma 1.13
For x* € SE(9), ||x, — x*|| converges if {n,} € (2.

Proof:
If x* € SE(¢) then:

" = 17 < 2" = G+ T Can)) 17 < 1310 Com) 1+ [ — x|

so that ||x,, — x*|| converges if {n,} € 2.



Lemma 1.14
If ¢ is dissipative and {n,} € ¢2, {x,} converges to a point in SE(¢).
Proof:

The limit points of {x,} are in SE(¢) by Lemma 1.3, hence by Lemma
1.13 and Opial's Lemma (13), {x,} converges to a point in SE(¢). =



4.2. Mirror descent

Assumptions:

a)H is a¢’" function from V to RU {+e}, L-strongly convex for some
norm|.|| on V=R" and X C dom H,

b) ||un|l« < M,¥n € N.

Dynamics

The classical discrete mirror descent algorithm (MD), introduced for
class (lll) in Nemirovski and Yudin, 1983 [52], see also Beck and
Teboulle, 2003 [6], is given by (recall (15)):

1
X1 = argmaxy{ (um|x) — —Dpg(x, %) }. (29)




The variational expression takes the form, x,, € X and :

(VH (xp) + Nty — VH (Xp1) |X — Xmy1) <0, VxeX. (30)

Note that Dy (x,y) plays the réle of 1|[x—y||? in (26).



Values

We will use the identity:
Dy (x,z) — Dy (x,y) = Dy(y,z) = (VH(y) = VH(z)|x — y) (31)
which is a direct consequence of the definition of Dy.

Proposition 1.10
Let the step size n, = -, then:

Ra(x) < O(v/n).

Proof:

<nnun7x _xn+l> + <nnun7xn+1 _xn>

<VH(XH+1) - VH(X,Z)‘X*X,HO =+ <nn”naxn+1 *xn>
Dy (x,%1) — Dr (X, Xn41) — D (Xn41,%n)

+ (Nt X1 — Xn) (32)

<nnun7x _xn>

IIA

by using (31).



Now, H is L strongly convex, hence:

L
DH(xn+laxn) > §||xn+l _an2 (33)
and moreover :
L L WM )?
(b ) = = a1 |2 < M a1 2 < 2200
so that one obtains the analogous of Proposition 1.6:
nM)?
<nnun>x_xn> < DH(.X,XH) _DH(x7xn+1) + (n2L) .
Summing one obtains:
1 1 M?
R(x) <Y [Dp(x,xm ——)F M= 4
() < Euertn) (o = ) 1y (34)

Hence the bound like in Proposition 1.9. L]



Trajectories

Consider class (ll).

Lemma 1.15
For x* € SE(¢), Dy (x*,x,) converges if {n,} € 2.

Proof:
Start with (32) for x* € SE(¢) and use Dy > 0 to get:

DH(X*>xm+1) < DH(x*axm) - <nmum‘xm _xm+1> (35)

thus it remains to control (M |xm — xXm+1)-



H being L strongly convex implies:
<VH(xm) - VH(xm-H)‘xm _xm+1> > Lme-H _meZ
but one has by (30):

(VH (xn) = VH (Xin11) [Xm = Xm41) (=Mt |Xim = Xm41)

<
< [Mmttnlbem = 2]

It follows that: |
||xm — Xm+1 H S ZHnmumH*
hence: |
(=Mt X — X1 1) < Z”nm”m”i

Altogether this implies from (35) that Dy (x*,x,,) converges if

{m} € 2.
Notice that there is no monotonicity property.



4.3. Dual averaging

Assumptions

a) h is a l.s.c. function from V to RU {+e}, L-strongly convex for
some norm ||.|| on V =R", with domh = X.

b) ||um||« < M,Vn e N.

Dynamics

We follow the formulation in Nesterov, 2009 [55]. The starting point is
again a maximization property:
1
Xm+1 = argmaxX{<Um’x> - 7}1()6)}, (36)
with U,, = ¥I' , ux and where {n,,} is decreasing.
Note that there is an explicit form without using a variational
formulation. The dual averaging algorithm is given by:

Xmt1 = VA" (M Up). (37)




Values

A direct proof, see Xiao, 2010 [84] or a discrete approximation of
(22), see Kwon and Mertikopoulos, 2017 [39], allows to obtain:

Proposition 1.11

n n 2
rx(h) | Yot Mt [t [5
< .

Z (thm|x — xm) < o + L

m=1 n

Proof:
Fenchel inequality:

(M Unlx) < h*(M,Un) + h(x)

implies:

(Unlx) <

h*(0 Y M Un) (M1 U h
()+Z( (MnUn)  h* (M 1)>+maxx _
Mo m=1 Nm Nm—1 M

(38)



Now:

—— = sup[{Unlx) — —
T up[{Unlx) gm} h h
< sup[(Upl) — ") 4 gupp M), RO
X m—1 X M Nim—1
- : (nm_lUm)"’( 1 —L)min}h
Mim—1 NMm—1 Mm X
so that replacing in (39) gives:
h*(0) | v
U, < + h* 1 Un o Uy
(Unlx) o mgl nmil[ Mm1Unm) =B (M1 Upn—1)]
—i—minh(i_i)_,_maXXh (40)
X Mo T MNn

his L strongly convex for ||.||, so that #* is 1/L smooth for ||.||. hence:

B (Mm=1Um) =B (Mm=1Unm—=1) — Mim=1Um — Mn—1Up—1 |[VE* (=1 Up—1)
= h*(nmflUm) _h*(nmflUmfl) - <T]m,1um|xm>
Mo 1
2L

IN

42



This leads to a property similar to Proposition 1.8 since:

(Umlx —xm) < (umlx) + [ (M—1Un—1) =B (Mm—1Unm)] + M||”m||i

NMm—1 2L
N1 [h*(nm—lUm—l) +h(x) - <nm—1 Um—17x>]

L (Un) 1) — (U]

m
_ 1 1
Mty 112 — " Ymink.
2L Nm—1 Mm~ X

IN

_l’_

Now inserting in (40) gives:

n
(Unlx) — Z (U] xm) <

and recall that 2*(0) = —miny A. =
Hence the convergence rate O(y/n) with time varying parameters

nnzl/\/ﬁ'



4.4. Comments on the discrete dynamics framework

1) The three algorithms achieve the same bound O(1/+/n) for the
speed of convergence of the average regret, which is optimal already
in class (lll), Nesterov, 2004 [54] , using time varying step sizes

Mn = 1/\/ﬁ

2) More precise properties concerning the trajectories are available
only in the (PD) set-up. The results are similar to the ones in the
continuous case, Section 3.2, if n, € ¢2, for class (Il).

(Compare to the analysis in Peypouquet and Sorin, 2010 [58] for
dynamics induced by maximal monotone operators in discrete and
continuous time.)

3) For vector fields ¢ with potential W one does not have the property
W(x,) decreasing.



5. Discrete time: Regularity

This section deals mainly with class (lll) convex gadient, where in
addition f satisfies some regularity properties.

Recall that f is B smooth if:

) 1)~ (9l ] < & eyl (@1)

Equivalently, Vf is B-Lipschitz.



5.1. Projected dynamics
Assumption: f is B smooth.

The algorithm is like (28) with constant step size n,, = 1/8.
Xmy1 = argmaxx{{(—Vf(xm),x) — 213 ||x me 1 (42)

which gives:

S = Tl [ — évmmﬂ- (43)

The analysis in this section is standard, see e.g. Nesterov, 2004 [54].



Define Tx = Ix[x — 5 V/(x)] and v(x) = B(x — Tx) (which plays the role
of Vf(x), corresponding to X = V).
The projection property gives:

(x— ;Vf(x) —Tx,y—Tx) <0, VyeX (44)
so that:
(VF(x),Tx—y) < (v(x), Tx—y), VyeX. (45)

Now one has, using f f-smooth, convex:
ST () = F(T) —1() +1 () 1),
< (90, T B Tl 4 (V) ),
= (V). Tx =)+ bR
00 Tx =) + 55 IR VreX by (45)

IN

hence: !
f(Tx)—f(y) < <v(x),x—y>—ﬁHv(x)Hz7 Yy eX. (46)



The following property is crucial and shows the difference with the
general non-smooth case.

Lemma 1.16 (Descent lemma)

1
Flet) =) < = 5V = =5 B =3l (47)
Proof:
By the previous inequality (46) with x,, =x=y. L]
In particular:

2113 i ||V(Xm)H2 Sf(xl) _f(xn—H) Sf(xl) —f*
m=1

hence {||v(x,)||} € ¢*.



Values

Proposition 1.12
1
fl) —f < 0().

Proof:

Consider the algorithm defined by {z,} and the process {v,} with
21 = X1, vy = —v(zy) and z,41 = 2, + v, With n =1/8.

Clearly z, = x,.

From section 3.1, Proposition 1.9 with n,, constant, one obtains:

n

B0 = X my—an) < 5olb=alP+ 3 X Iwl?  @8)
m=1

m=1
which is bounded since {||v(x,)||} € £2. This implies, using £ (x,)
decreasing and (46):

) =/ O < B30) = 351 3 Dol = Sy =P



Trajectories

Lemma 1.17
Fory* €8, ||x, —y*|| is decreasing.
Proof:

From (46) one has:

0= floner) =f07) = (vl). xn =37 = 35 e 2

hence : |
(V(Xn), X0 —y") > ﬁllv(xn)llz-
So that:
Xt =17 = [xasr =2l + o — 31> 4 20 g1 — X020 — )

l;rv<xn>uz+ ||xn—y*\\2+2<—l§v<xn>,xn—y*>

< =y

A



Proposition 1.13
{x,} converges to a pointin E.

Proof:
Since f(x,) decreases, the accumulation points of {x,} are in E and
by the previous Lemma 1.17, Opial's Lemma (13) applies.



5.2. Mirror descent

We initially assume only that H and f are €.
The next analysis follows Bauschke, Bolte and Teboulle, 2017 [5].

The main assumption in this section is the existence of a constant
L > 0 such that (recall that Dy is the Bregman distance (15)):

(A) LDy —D; >0
which is equivalent to : LH — f convex.

Note that if H is strongly convex and f is smooth (not assumed
convex), there exists L such that (A) holds. However f is not required
to be smooth.

(A similar pre-oder on convex functions appears in Nguyen, 2017
[56]).



Recall the procedure (30) with constant step size A:

<2'Vf(xn)+VH(xn+l)_VH(xn)|x_xn+l>207 VxeX (49)

and the identity:

Dy (x,z) — Dn(x,y) —Du(y,z) = (VH(y) = VH(z)|x—y).  (50)



Values

Lemma 1.18
Let2AL =1, then :

M Goni) ~fO] < Duyn) = Du(v i) = 3D, 3)
—ADy¢(y,x4),¥y € X. (51)

Proof :
Since:
Dy(x,z) = Dy(y,2) +f(x) = f(y) = (Vf (@) |[x—y), (52)

one has, by (A):
fx) <f) +(Vf(2)|x—y) +LDp(x,2) — Ds(y,2)-
Let x = x,11,2 = xy, SO that:

f(xn—H) _f(y) < <Vf(xn)‘xn+l _y> +LDH<xn+17xn) _Df(yaxn)



hence by (49):

Alf (owet) =f )] < (VH(xn11) = VH(x) [y = Xn11)
+ALDp (Xn41,%0) — ADf(y,xp).

Use then (50):

A’[f(xﬂJrl) _f(Y)] < DH(yaxn) _DH(yaanrl) _DH(xn+1axn)
+ALDg (Xn41,%0) — ADf(y, xp).

Hence the result with 2AL = 1.



Proposition 1.14
Assume H convex . Then:
1) f(x,) is decreasing.

2) Y. Dgi(Xn+1,%n) < +oo.
Assume f convex. Then :
3)

2
fa) —f(y) < jLDH(y,xl), Yy € X.

Proof:
1) and 2) Take y = x,, in (51).
3) Use f(x,) decreasing, Dy > 0 and the telescoping sum in (51).



Trajectories

Proposition 1.15

Assume f convex.

1)y € E implies: Dy (y,x,) decreases.

2) Assume:

[H1] : x* — x* € E = Dy(x*,xF) = 0,

[H2] : x* € E,Dy(x*,x*) — 0 = 2k — x*,

then {x,} converges to a point in E.

Proof:

1) follows from (51).

2) By the previous Proposition 1.14, the accumulation points of {x,}
arein E. Let thus x,, — x* € E.

By H1, Dy (x*,x,,) — 0 then by 1) Dy (x*,x,) — 0. Now use H2.



Compare with the proof of Proposition 1.7.

Note that the result is more precise than in the continuous case,
Section 3.3, where there was no decreasing property (for general H).

Let us finally mention the very recent result due to Bui and
Combettes, 2020 [16] Theorem 3.9., where the use of variable
metrics H, allows to reach f(x,) —f* = o(1/n).



5.3.Dual averaging

We follow the analysis in Lu, Freund and Nesterov, 2018 [44].
Recall that we consider class (Ill) : f convex and €.

As in the previous Section 4.2. the main hypothesis is the existence

of L > 0 with:
(A) LD, — Dy > 0.

where h: V — RU{+4oo} is |.s.c. with dom / = X.
Let xo = argminyh(x) and assume h(xy) = 0.

Dynamics

Define :
k—1

Gi(x) = Y [(Vf (xi),.x —x3) +f (x;)] + Lh(x)

i=0

and as in (36), ( with as usual uy = —Vf(xx) and U,, = Y- | ux):

xi = argminy Gy (x) = argmaxx{(Ux—1,x) — Lh(x)} (54)




Values

Proposition 1.16

Proof:
By definition:

Gir1(Xk+1) = Gr(xpr1) + (VF (o) X1 — xi) + ()

Note that (A) implies that each Gy —f is convex hence:

(57)

Gr(xks1) —f (xs1) = Gr(oer) —f (xx) + (G (xx) — Vf (x), X1 — xi)- (58)

Thus one has:

Gir1(Xig1) 2> f (Xaq1) + Gr(xx) + (G (k) , X1 — Xx)

(59)



but there exists u; € dGy(x¢) with :
(U, x—x1) >0, VxeX

by the choice of x;.
Finally, with gi+1 = Gi41(xx+1), One obtains:

git1 > f(Xks1) + 8, (60)

which implies, using f convex, thus Gi(x) < kf(x) 4+ Lh(x) by ( 53), that:
k-1

Y f(xi) < geyr < (k+1)f (x) + Lh(x) (61)

i=0

hence the result. n



5.4. Comments on the regular case

1) In the three cases (PD), (MD) and (DA) the speed of convergence
of the values is O(1/n) and the algorithms use a constant step
parameter.

2) Using (PD) with f smooth implies f(x,) decreasing and the
convergence of {x,}.

3) The approach in Section 5.2 shows that similar results can be
obtained using (MD) without assuming f with Lipschitz gradient if the
regularization function H is adapted to f : condition (A).

4) Analogous results for the values are much simpler to obtain in the
(DA) framework. However the properties concern the value at the
average f(x,) and no result is available on the trajectories.



6. Concluding remarks

For the three dynamics (PG), (MD) and (DA) 1), 2) and 3) below
holds:

1) In continuous time the speed of convergence of the average regret
to 0, of the order O(1/1) is not better in the general gradient convex
case than in on-line learning.

2) In discrete time the speed of convergence of the average regret to
0, of the order O(1/4/n) is not better in the general gradient convex
case than in on-line learning.

3) Adding a smoothness hypothesis on the convex function does not
change the convergence rate in continuous time but allow a better
convergence in discrete time from O(1//n) to O(1/n) .



4) A similar phenomena appears with the so-called acceleration
procedures following Nesterov, 1983 [53].

In the continuous time case a second order ODE leads to a speed of
convergence f(x,) —f(x*) < O(tiz) with no further hypothesis on f, see
Su, Boyd and Candes, 2014 [74], 2016 [75], Krichene, Bayen and
Bartlett, 2015 [37], 2016 [38], Attouch, Chbani, Peypouquet and
Redont, 2018 [2].

To obtain a similar property in discrete time, namely
fla) —f(x*) < O(nl—z) one has to assume f smooth, Chambolle and
Dossal, 2015[19], Attouch, Chbani, Peypouquet, Redont 2018 [2].

The same remark apply to the convergence of the trajectory, where
the smooth hypothesis on f is needed in discrete time and not in
continuous time.



5) Concerning the link between discrete and continuous time
dynamics, there are no direct results of the form: no-regret property
in continuous time imply no-regret property in discrete time but
analogy of the tools used and ad-hoc choice of the stage parameters,
see Sorin, 2009 [67], Kwon and Mertikopoulos, 2017 [39].

6) The Hilbert framework for (PD) allows to obtain convergence
results on the trajectories. The two other algorithms are more flexible
and can achieve better explicit speed of convergence of the values by
choosing an adequate norm, see the discussion in Bauschke, Bolte
and Teboulle, 2017 [5]. For (MD), specific regularization functions H
can also lead to convergence of the trajectories. (DA) is much simpler
to implement due to its integral formulation. However no convergence
properties of the trajectories are in general available.



7) In the framework of games, positive results are obtained in the
class of dissipative games. Accumulation points of the average
trajectory are equilibria.

8) Obviously potential games with a concave potential P will share the
propertles of class (Ill) smce basically one can replace for each i,

(97(x),y" —x') by (ViP(x),y' —x').



Stochastic approximation and applications

1. Stochastic approximation

We summarize here results from Benaim, Hofbauer and Sorin, 2005
[11], following the approach for ODE by Benaim, 1996 [7], 1999 [8],
Benaim and Hirsch, 1996 [10].



1.1. Differential inclusions
Let F be a correspondence from R™ to itself, u.s.c. with compact
convex non empty values satisfying, for some ¢ > 0:

sup || 2] < e(T+[lxf]), Ve R™

Z€F(x)
Consider the differential inclusion, see Aubin and Cellina, 1984[3]:
X € F(x). (1)
It induces a set-valued dynamical system {®, },.r defined by
®,(x) = {x() : x is a solution to (I) with x(0) = x}.

We also write x(1) = ¢;(x) and define ®4(B) = Usca, xep®:(x).



1.2. Attractors

Definition 2.1

1) C is invariant if for any x € C there exists a complete solution:
¢(x) € C forallt € R.

2) C is attracting if it is compact and there exist a neighborhood U,
& >0andamapT: (0,&) — R such that: foranyy € U, any
solution ¢, ¢;(y) € C¢ forallt > T(¢), i.e.

¢[T(£)7+oo)(U) - Cs, Ve € (0,80)

U is a uniform basin of attraction of C and we write (C;U) for the
couple.

3) C is an attractor if it is attracting and invariant.

4) The w-limit set of C is defined by

%(C) = Ns>0Uyec Ur>s q)t()’) = nSZO(I)[S,-‘rOO)(C)' (62)

5) Given a closed invariant set L, the induced set-valued dynamical
system is denoted by ®". L is attractor free if ®* has no proper
attractor.



1.3. Lyapounov functions
We describe here practical criteria for attractors.
Proposition 2.1

Let A be a compact set, U be a relatively compact neighborhood of A
andV a function from U to R".

Assume:
i) ®,(U) C U forallt>0.
i) V=10)=A

iij) V is continuous and strictly decreasing on trajectories on U\ A:
V(x) >V(y), VxeU\A,Vyed|(x), Vi>D0.

Then:
a) A is Lyapounov stable and (A;U) is attracting.
b) (B;U) is an attractor for some B C A.



Definition 2.2

A real continuous function V .on U open in R™ is a Lyapunov function
for (A,U),AC U If:

V(y) <V(x) forallx e U\ A,y € ®:(x),t >0,

V(y) < V(x) forallxe A,y € d,(x) andt > 0.

Proposition 2.2
Suppose V is a Lyapunov function for (A, U).
Assume that V(A) has empty interior.

Let L ¢ U be non empty, compact, invariant and attractor free.
Then L is contained in A and V|, is constant.



1.4. Asymptotic pseudo-trajectories

Definition 2.3
A continuous function z : R*—R™ js an asymptotic pseudo-trajectory
(APT) for (I) if for all T:

lim inf sup ||z(r+s)—x(s)|| =0, (63)

17990 XE84(r) 0<s<T
where S, denotes the set of solutions of (I) starting from x at 0.
In other words, for each fixed T, the curve: s — z(¢+s) from [0,7] to

R™ shadows some trajectory for (I) of the point z(z) over the interval
[0, T] with arbitrary accuracy, for sufficiently large .



Vé?o/T —Bt“)t;t°




Let:

t>0
be the limit set.
Theorem 2.1
Letz be a bounded APT of (I).

Then L(z) is (internally chain transitive, hence) compact, invariant
and attractor free.



1.5. Perturbed solutions

Definition 2.4
A continuous functiony : R = [0,00) — R™ s a perturbed solution to
(I) if it satisfies the following set of conditions (II):
i)y is absolutely continuous.
i) There exists a locally integrable functiont — U(t) such that
limy e sUPg< <7 || [/ U(s)ds|| =0, for all T > 0.
fii)

y(1) € FPU(y(n)+U(1),
for almost every t > 0, for some function § : [0,) — R with 6(t) — 0
ast— oo.

Here F3(x):= {y e R": 3z: ||lz—x| < &, d(y,F(z)) < §}.



The purpose is to investigate the long-term behavior of y and to
describe its limit set L(y) in terms of the dynamics induced by F.

Theorem 2.2
Any bounded solutiony of (II) is an APT of (I).

A natural class of perturbed solutions to F arises from certain
stochastic approximation processes.



Definition 2.5
A discrete time process {x,} with values in R™ is a (y,U) discrete
stochastic approximation for (I) if it verifies a recursion of the form:

Xn+1 —Xn € %1+1[F(-xn)+ Un+l]7 (IH)

where the characteristics {y,} and {U,} satisfy:
i) {w}.>1 is @ sequence of nonnegative numbers such that:

;’yn:oo’ l}glgo}/nzo,
i) U, € R™ are (deterministic or random) perturbations.
To such a process is naturally associated a continuous time

interpolated (random) process w, denoted (1V), as usual:
th =Y Ym» W(ta) = x, and w is linear on [t,, f,41].



1.6. From interpolated process to perturbed solutions

The next result gives sufficient conditions on the characteristics of the
discrete process (/1) for its interpolation (V) to be a perturbed
solution (I7).

Proposition 2.3

Assume that:

k-1
(x) VT >0, ’}E{}OSUP{ i;l%urlUiﬂ

:k:n+1,...,m(r,,+T)} =0,

where 1, =Y" | v. andm(t) = sup{k > 0:1 > 7 };
(%) sup,, ||xn|| = M < oo.
Then the interpolated process w is a perturbed solution of (I).



We describe now sufficient conditions for condition (x) to hold.
Let (Q,.7#,P) be a probability space and {.%,},>¢ a filtration of .Z#.

A stochastic process {x,} satisfies the Robbins—Monro condition if:
i) {%} is a deterministic sequence.

i) {U,} is adaptedto {%,},

11) E(Un-H ‘ ﬁn) =0.

Proposition 2.4

Let {x,} given by (IIl) be a Robbins—Monro process. Suppose that
for some g > 2

supE(|U,]|) <o and Yyt <o
n n

Then assumption (x) holds with probability 1.

Remark
Typical applications are
i) U, uniformly bounded in L? and y, = 1,

i) U, uniformly bounded and y, = o(@).



1.7. Main result

Consider a random discrete process defined on a compact subset of
RX and satisfying the differential inclusion:

Y,—Y, 1€ an[T<Yn—1) + Wn]

where:

i) T is an u.s.c. correspondence with compact convex values,
”) al’l Z O: Znan = +oo! Znayzz < +°°J

iii) E(W,|Y1,...,Y,_1) = 0, W, uniformly bounded in 2.

Theorem 2.3
The set of accumulation points of {Y,} is almost surely a compact
set, invariant and attractor free for the dynamical system defined by
the differential inclusion:

Y eT(Y).



A typical application is the case where:
Yy~ Y, 1 €a,T(Y, 1)
with T random, where one writes:
Yo — Yy 1 €au[E[T(Y,1)|Y1,..., Yy 1]

—I—(T(Yn_]) —E[T(Yn_l)’Yl,...,Yn_]])].



2. Applications
We mainly follow Benaim M., J. Hofbauer and S. Sorin, 2006 [12].

2.1. Application 1: Fictitious Play for potential games

Proposition 2.5

Assume G(NE(G)) with non empty interior. Then (DFP) converges to
NE(G).

Proof:

Apply Proposition 2.2 to W with A = NE(G) and U = X. ]



2.2. Application 2: No regret

Definition 2.6

P is a potential function for D = RX if
(i) P is €' fromRX to R*

(ii) P(w) = 0 iffw € D

(iii) VP(w) € RX

(iv) (VP(w),w) > 0,Vw ¢ D.

Compare Hart and Mas Colell (2003).

Example: P(w) = ¥ ([w¥]*)%= d(w,D)>.



a) External regret

Given a potential P for D = RX, the P-regret-based discrete procedure
for player 1 is defined by:

o(h,) +~VP(R,) if R,¢D (64)

and arbitrarly otherwise.



The discrete dynamics associated to the average regret satisfies:

_ — 1 —
nt1—Rp = n—l—l(Rn+l —Rn)-

=

By the choice of o, one has:
<VP(En)7E(Rn+1|hn)> =0.

(recall (x,Ex(R(.,U)))=0.)
The continuous time version is expressed by the following differential
inclusion in R™:

weNw)—w, (65)

where N is a correspondence that satisfies:

(VP(w),N(w)) =0.



Theorem 2.4
The potential P is a Lyapounov function associated to D = RX.
Hence, D contains a global attractor.

Proof :
For any solution w, if w(z) ¢ D then

d

S PW(0) = (VP(w(1)), (1))

€ (VP(w(1)), N(w(1)) —w(1)) = —(VP(w(1)),w(1)) <O

Corollary 2.1
Any P-regret-based discrete dynamics satisfies external consistency.
Proof:

D =RRX contains an attractor whose basin of attraction contains the
range % of R and the discrete process for R, is a bounded DSA. n



b) Internal regret

Definition 2.7
Given a potential Q for M = RK a Q-regret-based discrete procedure
for player 1 is a strategy o satisfying:

6 (hy) € Inv[VO(S,)] if S,¢M (66)

and arbitrarly otherwise.
The discrete process of internal regret matrices is:

) ) 1 )
Sni1 =8, = ——|[Sn+1—=S,]. 67
+1 n+1[ 41— 8] (67)

with the property:

<VQ( n)v E(Sn-H ’hn» =0.
(Recall (A,EL(S(.,U))) =0.)



The corresponding continuous time procedure with w € RK® is given
by:
w(t) € N(w(r)) —w(r) (68)

and:
(VO(w),N(w) =0.

Theorem 2.5
The previous continuous time process satisfy:

Wi (1) —=1000.
Corollary 2.2
The discrete process (67) satisfy:
[SK]F .0 a.s.

hence conditional consistency (internal no regret) holds.



2.3. Application 3: Consistency with smooth fictitious play

This procedure is based only on the previous observations and not
on the moves of the predictor, hence the regret cannot be used,
Fudenberg and Levine, 1995 [25].

Definition 2.8

A smooth perturbation of the payoff U € % is a map

VE(x,U) = (x,U) —ep(x), 0<e€< g, such that:

()p:X—Risa¥" function with ||p| <1,

(i) argmax,.x V¢(.,U) reduces to one point and defines a continuous
map br® : % — X, called a smooth best reply function,

(iii) D1 VE(br®(U),U).Dbrf(U) =0

(for example D\U%(.,U) is 0 at br®(U)).



Recall that a typical example is obtained via the entropy function:

p(x) = Zxklogxk. (69)
&
which leads to: (W4/e)
e k_ exp €
bl = Yiexexp(Ui/e) (70)

Le:t
WE(U) = max VE(x,U) = V&(br®(U),U).

X

Lemma 2.1 (Fudenberg and Levine, 1999 [26])

DWE(U) = bré(U).



Let us first consider external consistency.

Definition 2.9

A smooth fictitious play strategy o associated to the smooth best
response function br® (in short a SFP(¢) strategy) is defined by (U, is
the average vector of payoffs up to stage n):

¢ () = brf (T,).

The corresponding discrete dynamics written in the spaces of both
vectors and outcomes is:

— — 1
Un+1_Un—n+1

[Un+1 _Un]a (71)

_ _ 1 _

Dpy1 — Oy = m[a)nﬂ - (On]> (72)
with: B

E(w,11|h,) = <br8(Un), Upi1)- (73)



Lemma 2.2
The process (U,,®,) is a Discrete Stochastic Approximation of the
differential inclusion:

(1,0) € {(U—u, (brf(u),U) —);U € X}. (74)

The main property of the continuous dynamics is given by:

Theorem 2.6

The set {(u,w) € % xR : Wé(u) — o < €} is a global attracting set for
the continuous dynamics.

In particular, for any n > 0, there exists € such that for e < g,
limsup,_,,, Wé(u(r)) — w(t) < n (i.e. continuous SFP(¢) satisfies
n-consistency).



Proof :
Let ¢(r) = W¥(u(r)) — (7).
Taking time derivative one obtains, using the previous Lemma:

4(t) = DWE(u(n)a(r) - o(r)

= (br*(u(r),u(s)) — o(1)
= (br*(u(n), U—u()) = ((br*(u(1), U) — (1))
< —q(t)+e.

Hence:
q(1)+q(1) <e,
so that ¢(r) < € + Me™" for some constant M and the result follows.



Theorem 2.7

For any n > 0, there exists € such that for e <&, SFP(¢) isn-

consistent.

Proof:

The assertion follows from the previous result and the DSA property.
u

A similar result holds for internal no-regret procedures.

Benaim and Faure, 2013 [9] obtain consistency with vanishing
perturbation e =n"%a < 1.
Note that the corresponding process is non longer autonomous.

For the link with replicator dynamics and comparison with best reply
procedures, see Hofbauer, Sorin and Viossat, 2009 [35].



Research directions:

a) Replicator dynamics and correlated equilibria, Viossat, 2007 [79],
2014 [80], 2015 [81],

b) Games on signals,

c) Subclasses of games and adapted equilibria,

d) Regularity and approximation discrete/continuous,

e) Asymptotic analysis: attractors vs set of fixed points.
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