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Optimisation Globale
Définition classique

Définition – Optimisation globale

Étant donné un ensemble compact Ω ⊂ ℝ𝑑  et une fonction continue 
𝑓 : Ω → ℝ, le but de tout algorithme d’optimisation globale est de 
trouver un point 𝑥⋆ ∈ Ω tel que

𝑥⋆ ∈ argmin
𝑥∈Ω

 𝑓(𝑥).
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Optimisation Globale
Définition classique

Définition – Optimisation globale

Étant donné un ensemble compact Ω ⊂ ℝ𝑑  et une fonction continue 
𝑓 : Ω → ℝ, le but de tout algorithme d’optimisation globale est de 
trouver un point 𝑥⋆ ∈ Ω tel que

𝑥⋆ ∈ argmin
𝑥∈Ω

 𝑓(𝑥).

Exemple d’une fonction multimodale

G. Serré — Centre Borelli 2



Optimisation Globale
Lien avec l’échantillonnage

L’optimisation globale peut être vue comme un problème d’échantillonnage (Hwang, 1980; Kirkpatrick et al., 1983).
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Optimisation Globale
Lien avec l’échantillonnage

L’optimisation globale peut être vue comme un problème d’échantillonnage (Hwang, 1980; Kirkpatrick et al., 1983).

Boltzmann𝑓(𝜅) a la densité suivante :

𝜌𝜅(𝑥) = exp(−𝜅𝑓(𝑥))
∫

Ω
exp(−𝜅𝑓(𝑦)) d𝑦

.
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Ω
exp(−𝜅𝑓(𝑦)) d𝑦
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Optimisation Globale
Lien avec l’échantillonnage

L’optimisation globale peut être vue comme un problème d’échantillonnage (Hwang, 1980; Kirkpatrick et al., 1983).

La limite de Boltzmann𝑓(𝜅) quand 𝜅 → ∞ est supportée par l’ensemble des minimiseurs de 𝑓 .

𝜌0.1 𝜌0.5
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Systèmes de particules
Une approche moderne de l’optimisation globale

Concevoir des systèmes de particules en interaction qui se comportent asymptotiquement comme la distribution de 
Boltzmann (ex. Pinnau et al. (2017); Serré et al. (2025)).

G. Serré — Centre Borelli 4



Systèmes de particules
Une approche moderne de l’optimisation globale

Concevoir des systèmes de particules en interaction qui se comportent asymptotiquement comme la distribution de 
Boltzmann (ex. Pinnau et al. (2017); Serré et al. (2025)).

d𝑋𝑖
𝑡 = [ 1

𝑁
∑
𝑁

𝑗=1
−𝜅(𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡)𝑘∇𝑓(𝑋𝑗

𝑡)

+∇𝑋𝑗
𝑡
𝜅(𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡)] d𝑡

où 𝜅 est un noyau symétrique défini positif
𝑘 est un paramètre de température

sbs
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Systèmes de particules
Une approche moderne de l’optimisation globale

Concevoir des systèmes de particules en interaction qui se comportent asymptotiquement comme la distribution de 
Boltzmann (ex. Pinnau et al. (2017); Serré et al. (2025)).

d𝑋𝑖
𝑡 = [ 1

𝑁
∑
𝑁

𝑗=1
−𝜅(𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡)𝑘∇𝑓(𝑋𝑗

𝑡)

+∇𝑋𝑗
𝑡
𝜅(𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡)] d𝑡

où 𝜅 est un noyau symétrique défini positif
𝑘 est un paramètre de température

sbs

d𝑋𝑖
𝑡 = −𝜆(𝑋𝑖

𝑡 − 𝑣𝑓) d𝑡 + 𝛾 ‖𝑋𝑖
𝑡 − 𝑣𝑓‖2 d𝐵𝑖

𝑡

où 𝑣𝑓 = ∑𝑁
𝑖=1 𝑋𝑖

𝑡𝑒
−𝛼𝑓(𝑋𝑖

𝑡)

∑𝑁
𝑖=1 𝑒−𝛼𝑓(𝑋𝑖

𝑡)

𝜆, 𝛾, 𝛼 sont des paramètres positifs

cbo
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Systèmes de particules
Une approche moderne de l’optimisation globale

Nous pouvons visualiser le champ vectoriel associé à ces systèmes de particules :

𝑥 : ℝ2 ↦ sin(‖𝑥‖2)
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Systèmes de particules
Une approche moderne de l’optimisation globale

Nous pouvons visualiser le champ vectoriel associé à ces systèmes de particules :

sbs (𝑡 ≜ 0) cbo (𝑡 ≜ 0)
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Systèmes de particules
Une approche moderne de l’optimisation globale

Nous pouvons visualiser le champ vectoriel associé à ces systèmes de particules :

sbs (𝑡 ≜ 700) cbo (𝑡 ≜ 250)
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Systèmes de particules
Abstraction commune

« L’abstraction […] ne consiste pas à aller vers le plus compliqué, mais bien au contraire à aller vers le plus simple. »

Claire Voisin, Faire des mathématiques
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Systèmes de particules
Abstraction commune

« L’abstraction […] ne consiste pas à aller vers le plus compliqué, mais bien au contraire à aller vers le plus simple. »

Claire Voisin, Faire des mathématiques

Systèmes d’interaction de McKean-Vlasov :

d𝑋𝑖
𝑡 = 𝒃(𝑋𝑖

𝑡 , ̂𝜇𝑡) d𝑡 + 𝝈(𝑋𝑖
𝑡 , ̂𝜇𝑡) d𝐵𝑖

𝑡

où
• 𝑡 ∈ ℝ+, 𝑖 ∈ ⟦1, 𝑁⟧ ;
• ̂𝜇𝑡 est la mesure empirique des particules au temps 𝑡 ;
• 𝐵𝑖

𝑡 sont des mouvements browniens indépendants ;
• 𝒃 est le drift et 𝝈 est la diffusion.
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Travailler avec des assistants de preuve

Les assistants de preuve sont des logiciels pour écrire et prouver des énoncés mathématiques.
(ex. Rocq, Lean, Isabelle/HOL)

Dans quel but ?
• garantir la correction des résultats mathématiques ;
• améliorer la transparence et la reproductibilité ;
• récemment, pour construire des systèmes d’IA avec raisonnement formel (ex. Harmonic, Numina).
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Travailler avec des assistants de preuve

Les assistants de preuve sont des logiciels pour écrire et prouver des énoncés mathématiques.
(ex. Rocq, Lean, Isabelle/HOL)

Dans quel but ?
• garantir la correction des résultats mathématiques ;
• améliorer la transparence et la reproductibilité ;
• récemment, pour construire des systèmes d’IA avec raisonnement formel (ex. Harmonic, Numina).

Formalisation de résultats et définitions autour de l’optimisation globale en utilisant L

AE

N.
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L

AE

N
Un tutoriel

L

AE

N (avec Mathlib), est un assistant de preuve puissant pour écrire et prouver des énoncés mathématiques :
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Un tutoriel

L

AE

N (avec Mathlib), est un assistant de preuve puissant pour écrire et prouver des énoncés mathématiques :

L

AE

N
import Mathlib

example : StrictMono (fun (x : ℝ) ↦ x + 1) := by
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L

AE

N
Un tutoriel

L

AE

N (avec Mathlib), est un assistant de preuve puissant pour écrire et prouver des énoncés mathématiques :

L

AE

N
import Mathlib

example : StrictMono (fun (x : ℝ) ↦ x + 1) := by

  intro x y hxy

  /-

   x y : ℝ

   hxy : x < y

   ⊢ x + 1 < y + 1

  -/
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L

AE

N
Un tutoriel

L

AE

N (avec Mathlib), est un assistant de preuve puissant pour écrire et prouver des énoncés mathématiques :

L

AE

N
import Mathlib

example : StrictMono (fun (x : ℝ) ↦ x + 1) := by

  intro x y hxy

  /-

   x y : ℝ

   hxy : x < y

   ⊢ x + 1 < y + 1

  -/

  exact (add_lt_add_iff_right 1).mpr hxy

  /-

   - add_lt_add_iff_right (a : ℝ) : x + a < y + a ↔ x < y

  -/

G. Serré — Centre Borelli 7



L

AE

N
En pratique – LIPO

Étant donnée une fonction de Lipschitz, LIPO construit itérativement une borne supérieure pour identifier les régions 
où la fonction ne peut pas être maximisée (Malherbe & Vayatis, 2017).

Rejection area

f

Potential maximizers

LIPO’s upper bound

Borne supérieure de lipo après 4 itérations
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L
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N
En pratique – LIPO

Des résultats théoriques complexes sur les algorithmes d’optimisation globale peuvent être formalisés en L

AE

N.

Par exemple, nous avons formalisé le résultat suivant sur l’algorithme LIPO (Serré et al., 2024) :

Théorème – Probabilité de rejet de LIPO (Serré et al., 2024)

Pour toute fonction 𝜅-Lipschitz 𝑓  et tout 𝑥 ∈ Ω, soit ℛ︀(𝑥, 𝑡) l’événement de rejet de 𝑥 au temps 𝑡. Alors, on a :

ℙ(ℛ︀(𝑥, 𝑡 + 1)) ≤ 𝑡𝜋𝑑/2Δ𝑑

𝜅𝑑Γ(𝑑/2 + 1)𝜆(Ω)
,

où Δ ≜ max𝑥∈Ω 𝑓(𝑥) − min𝑥∈Ω 𝑓(𝑥).
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Merci pour votre attention !
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