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Context

Partial Differential Equations (PDEs) are a universal tool in the mathematical modelization of complex
phenomena. As finding explicit formulae of the solution of such PDEs is generally out of reach, numerical
methods (Finite Difference, Finite Volume, Finite Elements, etc.) to approximate those solutions play an
essential role in today’s science. Although numerical methods conveniently provide approximations, they
bring new challenges, such as reduce their cost and complexity vs. accuracy, and devise tools to analyse
their properties, which can be far from those of the approximated model. Kinetic methods, and in partic-
ular lattice Boltzmann methods (LBM) introduced at the end of the 80s, revolutionized simulations
within (among other fields) computational fluid dynamics, both for incompressible and compressible flows
featuring one or several phases. These methods achieve impressive speed and parallelization capabilities,
and feature a very simple structure, owing to their derivation inspired from the Boltzmann equation
and uniform Cartesian meshes. Despite these advantages, a significant challenge concerns a strongly
lacunary rigorous mathematical understanding, the core of numerical analysis, due to the lack
of relevant tools—contrarily to traditional numerical methods.

Results on rigorous numerical analysis for LBM schemes are extremely rare and scattered. This
is probably due to the extreme polarization towards applications and the fact that these schemes are
intrinsically challenging to study due to the presence of merely numerical unknowns, which do not
correspond to unknowns in the PDEs, thus bring no “easy” numerical property. During his PhD, Thomas
Bellotti started looking at this issue by bridging with traditional Finite Difference methods [Bellotti
et al., 2022], to re-use theoretical tools germane to this framework [Bellotti, 2023c, Bellotti, 2023a],
which are nowadays classical [Strikwerda, 2004, Brenner et al., 2006], on LBM schemes. Then, the
natural question is whether LBM schemes can be studied, for instance concerning guarantees on their
convergence, without turning them into something else, and fostered a research path built on the
relation to kinetic/relaxation schemes [Aregba-Driollet, 2024, Aregba-Driollet and Bellotti, 2025]. The
present post-doctoral research project shall conveniently navigate between both standpoints, considering
that—roughly speaking—the first one is more suitable for linear problems, whereas the second one
handles non-linearities more easily.
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Objectives and research paths for the candidate

Monotonicity, invariant compact sets, and L∞ stability are essential features of numerical schemes
in order to prove their convergence to weak-solutions in non-linear contexts [Godlewski and Raviart,
1991]. These themes shall be explored concerning LBM schemes, where the difficulty to be taken into
account is the fact that—to achieve computational efficiency—these methods feature a large number of
unknowns, whence some freedom on their initialization. In particular

• T. Bellotti [Bellotti, 2023b, Chapter 11] has investigated monotonicity, invariant compact sets, and
L∞ for a simple two-unknowns scheme (known as D1Q2) using its multi-step Finite Difference
counterpart, adapting the classical framework of [Godlewski and Raviart, 1991]. However, this
procedure—even in the linear setting—does not provide the whole set of parameters where
these properties can be obtained. This is due to the presence of negative coefficients, which however
play no role when the initialization is taken into account. This has been partly understood through
the use of Green’s functions: the first path in the post-doc will be to fully understand this fact
(some gaps are still to be filled) and embed in a larger proof of convergence for this numerical
method, making the adaptation to the non-linear setting.

• Further developments [Aregba-Driollet, 2024] have shown how to analyze these properties directly
on LBM schemes. Although it was believed that this would secure the whole space of parameters
where invariant compact sets determined by the initial datum are expected, this is far from being
true for more involved schemes (e.g., D1Q3). A second big step in the post-doc will be to understand
why—thanks to specific initializations, which roughly speaking put the numerical solution on
the “right manifold”, invariant compact sets are preserved even in presence of negative weights,
where the definition of monotonicity is violated. It is quite impressive that if E is the scheme matrix
and I the initialization matrix, one can have supn∥En∥∞ ≫ 1 but, thanks to the initialization,
supn∥EnI∥∞ = 1.

Again, this study shall be achieved by the study of Green’s functions for the multi-step Finite
Difference scheme and/or those (which are still to be envisioned and defined) for the raw LBM
scheme. This study involves a precise understanding of the spectrum of the schemes analogously
to [Godillon, 2003, Coeuret, 2024, Coeuret, 2025], from which a great deal of inspiration could be
taken. From a larger perspective, if the post-doctoral researcher is interested on this topic, it will
be very stimulating to provide a more general characterization of the spectrum of block banded
Toeplitz matrices (or operators) involved in LBM scheme, which has only been shallowly and
non-rigorously described in [Bellotti, 2025] for the simple D1Q2.

• Something which is tightly linked to the previous discussion—and which comes from no longer
requesting that the scheme’s solution lies in an invariant compact set—is plain L∞ stabil-
ity. Indeed, the compact set can grow for a finite number of iterations and then stabilize, i.e.
supn∥En∥∞ < +∞. Another objective of the post-doc will be to extend the results of [Thomée,
1965] (see also [Coulombel, 2022]), to multi-step Finite Difference schemes (and thus to LBM
schemes): characterize L∞ stability only by means of Taylor expansions of the eigenvalues
of the scheme’s matrix near tangency points to the unit circle. Preliminary observations
seem to show that LBM schemes possess these properties most of the time, except when they are
time-reversible. The post-doc shall try to make this guess more rigorous.

• Finally, the description of Green’s functions, which is a staple between all previous items, also allows
the study of discrete shock profiles [Godillon, 2003, Coeuret, 2024], sustained by numerical
schemes. To the best of T. Bellotti’s knowledge, this has never been investigated concerning LBM
schemes. If time permits, it will be very interesting to dig into this issue during the post-doctoral
program.

2



References

[Aregba-Driollet, 2024] Aregba-Driollet, D. (2024). Convergence of Lattice Boltzmann methods with overrelax-
ation for a nonlinear conservation law. ESAIM: Mathematical Modelling and Numerical Analysis, 58(5):1935–
1958.

[Aregba-Driollet and Bellotti, 2025] Aregba-Driollet, D. and Bellotti, T. (2025). Monotonicity and conver-
gence of two-relaxation-times lattice Boltzmann schemes for a non-linear conservation law. arXiv preprint
arXiv:2501.07934.

[Bellotti, 2023a] Bellotti, T. (2023a). Monotonicity for genuinely multi-step methods: results and issues from a
simple lattice Boltzmann scheme. In International Conference on Finite Volumes for Complex Applications,
pages 33–41. Springer.

[Bellotti, 2023b] Bellotti, T. (2023b). Numerical analysis of lattice Boltzmann schemes: from fundamental issues
to efficient and accurate adaptive methods. PhD thesis, Institut Polytechnique de Paris.

[Bellotti, 2023c] Bellotti, T. (2023c). Truncation errors and modified equations for the lattice Boltzmann method
via the corresponding Finite Difference schemes. ESAIM: Mathematical Modelling and Numerical Analysis,
57(3):1225–1255.

[Bellotti, 2025] Bellotti, T. (2025). Consistency and stability of boundary conditions for a two-velocities lattice
Boltzmann scheme. IMA Journal of Numerical Analysis, page draf039.

[Bellotti et al., 2022] Bellotti, T., Graille, B., and Massot, M. (2022). Finite Difference formulation of any lattice
Boltzmann scheme. Numerische Mathematik, 152(1):1–40.

[Brenner et al., 2006] Brenner, P., Thomée, V., and Wahlbin, L. B. (2006). Besov spaces and applications to
difference methods for initial value problems, volume 434. Springer.

[Coeuret, 2024] Coeuret, L. (2024). Stability of discrete shock profiles for systems of conservation laws. PhD thesis,
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