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Program

1. Yesterday morning:
Introduction to nonsmooth convex
optimization
2. Yesterday afternoon:
Models and the proximal point algorithm
3. Today morning:
Bundle methods and the Moreau-Yosida
regularization
4. Today afternoon:
Beyond first order: VU-decomposition
methods
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e-subgradient descent methods
> PPA

xkt1 = p{k(xk) = xk— thk—H with G**' € 88k+1 f(xk)

(DR) is satisfied at all iterations (no hats needed)

may not be implementable

> Bundle method as inexact PPA
= Pl (%K) = %% — tG¥ with G¥ € 9, f(X¥)

K1 = %X whenever (DR) is satisfied




Bundle methods

0 Choose x', t; >0, and set X' = x', k = 1.
1 Given XX, My and t,, compute

XK1 = argmin My (x) + 21—,kHX— XK|1?

and
Skt = F(XF) — M (x**1) = X+ 1| | G¥ |1

2 Call the oracle at x*. If 8,1 < tol [F[e]d
3 (Descent Rule)
SS: y(k-H _ Xk+1
fOxX*N) < F(RF) — mby? yes
() < 1(5) “ no  NS: &K1 =%k
4 Choose a new model : f(-) > My1(-) and Myy1(+) >
max(Mk(xk+1)+ GFT (- — xKH1), fht o gk 1T (L gkt
Choose a bounded below stepsize t1 that, if NS, is
nondecreasing
5 Setk=k+1,loopto1.
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Relatives in the family of bundle methods

» Proximal BM, parameter i
» Trust-region BM, parameter Ay
» Level BM, parameter /;

Using (DR) and the theory in [CL93], we
showed convergence for the proximal family

What about speed?
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Digital Object Identifier (DOI) 10.1007/s1010799C0088
Stephen M. Robinson

Linear convergence of epsilon-subgradient descent
methods for a class of convex functions*
Consider a method defining iterates
XK1 = xk — g% for g¥ € def(x*) and such that
> (DR) holds with 8 = & + t|| g¥||?
>t € [tmina tmax] with 0 < tnin < fmax < o0
If f is not too “flat” around its set of minimizers X,
f(x) > inf f+ cdist(x, X) for any x € X + B,

the rate of convergence if R-linear

< “inverse growth condition”

HELCR Gl <= Kurdyka-Lojasiewicz inequality
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Jean-Jacques Moreau and its envelope
The Moreau-envelope of f is a C''-smoothing of f

Fitx) =min{ ry)+ Ll —xI2}

ethe unique minimizer is the
proximal point mapping pf(x)

ethe envelope’s gradient is
VE(x) = (x=pi(x))
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minf(x) EEXLUNEIENECE x* = p(x¥)

Picard’s iteration Xk+1 = pt(Xk)

= xk—;(xk —pi(x))
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Proximal point relations M

minf(x) EEXLUNEIENECE x* = p(x¥)
is equivalent to EaIiV=1EY)

k+1 k
Picard's iteration X I pt(X )

a gradient method to minimize Moreau’s envelope
note: the “stepsize” t is NOT computed by a linesearch

(curve-search on the metric)
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Generalizing Moreau’s envelope
Replace the proximal parameter by a matrix:

1
Instead of ;7 Juse a positive definite matrix M :

t

Fu(x) = min { 1(7) + glly 3

» There is a unique minimizer pu(x)

» The proximal point operator is Lipschitzian

» The relation VFy(x) = M(x — pu(x)) holds

» minf <= minFy <= x = pu(x)
Interest: now we perceive better the role of M



The role of the metric

k+1  _ pM(Xk)

= xf— M_1M<xk —pt(xk))
= xXK—MVF,(xH)

Picard’s iteration X

a gradient method to minimize Moreau’s
envelope, preconditioned by the matrix
M1~ V_sz(Xk)



The role of the metric

Picard’s iteration Xk—i_1 = pM(Xk)

= xk— M_1M<xk —pt(xk))
= xXK—MVF,(xH)
a gradient method to minimize Moreau’s
envelope, preconditioned by the matrix
M~ ~ V=2F),(x")
We know F, € C'''...when does the
Hessian exist?



Existe-t-il une géneralisation adéquate de la
notion de Hessien?...Cette question est la
plus passionnante qui se pose actuellement,
et une réponse satisfaisante marquerait prob-
ablement pour longtemps une étape décisive
dans les recherches fondamentales en pro-
grammation mathématique.

“Does an adequate generalization for the no-
tion of a Hessian exist?. .. This is today’s most
interesting question, to which a satisfactory
answer would probably start a new, long-
lasting and decisive era for basic research in
Mathematical Programming.”
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How structural nonsmoothness has been exploited

Improving speed only possible if algorithm

incorporates [igauiey information
1995-2000: U-Lagrangian (Lemaréchal, Oustry,
Sagastiz)
1999: YU -decomposition (Mifflin, Sagastiz)
2002: M-manifolds, partly smooth functions
(Lewis, Hare)
2003: Composite objective functions (Shapiro)

Later on, special minimization of composite objective
functions revisited: Lewis & Wright, Nesterov,
Planiden, Hare & Sagastiz, Liu, Sagastiz & Solodov



lllustrative examples

» The half-and-half function in IR?
f(x1,X2) = |x1| + bx3

L7
oo,
03000,
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Proximal point: calculus rules

» separable sum:
f(x,y) = g(x) + h(y) =
pi(x) = (P2(x),PP())
» scalar factor (o # 0) and translation (v # 0):
f(x)=g(ax+v) =
pi(x) = & (P ¥(ax+v)—v)
» “perspective” (o > 0):
f(x) = ag(Fx) = pj(x) = apf’ (%)

(04



Proximal point: special functions
» + linear term (v # 0):
f(x) = g(x) + (v, x) = pi(x) = p{ (x = v)
» + convex quadratic term (¢ > 0):
1 2
1(x) = g(x) + S-llx = vIP =

flvy _ A9 _ _L
pi(x) = p;~ (Ax+ (1 ).)v)for),_tJr1

» composition with linear term such that A'A = él,
(a # 0):
f(x) =g(Ax+v) =
pl(x) = (I— ¢ATA)x + oA [p?/a(Ax+ v)—v



Proximal calculations: half-and-half function
Since f(x1,%) = |x1| + 2x3 is a separable sum,
f(x1,x2) = fi(x1) + f2(x2), the prox can be computed
separately for each component:

pi(x) = (pf (x1).pE ()



Proximal calculations: half-and-half function
Since f(x1,%) = |x1| + 2x3 is a separable sum,
f(x1,x2) = fi(x1) + f2(x2), the prox can be computed
separately for each component:

pi(x) = (pf (x1).pE ()

pi(x1) = x1 — proji_ 4 (x1)



Proximal calculations: half-and-half function
Since f(x1,%) = |x1| + 2x3 is a separable sum,
f(x1,x2) = fi(x1) + f2(x2), the prox can be computed
separately for each component:

pi(x) = (pf (x1).pE ()

pi(x1) = x1 — proji_ 4 (x1)

1
1+ bt

pE(xo) = X2



Proximal calculations: half-and-half function
Since f(x1,%) = |x1| + 2x3 is a separable sum,
f(x1,x2) = fi(x1) + f2(x2), the prox can be computed
separately for each component:

pi(x) = (pf (x1).pE ()

pi(x1) = x1 — proji_ 4 (x1)

1
1+ bt

pE(xo) = X2

Ft(X) =7 and VFt(X) =7



Proximal calculations: half-and-half function
Since f(x1,%) = |x1| + 2x3 is a separable sum,
f(x1,x2) = fi(x1) + f2(x2), the prox can be computed
separately for each component:

pi(x) = (pf (x1).pE ()

pit(x1) = x1 — proji_¢ g(x1)

1
1+ bt

pr(xe) = Xo

Ft(X) =7 and VFt(X) =7

What about a Hessian?
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» Let M be the current matrix
» for example, let u = Ax, and v = Ag
The quasi-Newton equation
M. u = v should hold for the update.
If M = ul, a scalar multiple of the identity satisfying
the gN equation may be imposible, as it writes down

Hk1U =V
with v and v vectors.
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quasi-Newton update of {M* = I}
» Let M be the current matrix
» for example, let u = Ax, and v = Ag <+ options!
The quasi-Newton equation
M. u = v should hold for the update.
If M = ul, a scalar multiple of the identity satisfying
the gN equation may be imposible, as it writes down

Hk1U =V
with v and v vectors.
Instead, Uk solves

N )
min 2 lv/k ]

p=
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» Given u and Ag, invert the prox
» compute v accordingly
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Reversal quasi-Newton update

» Given u and Ag, invert the prox
» compute v accordingly

u — ? AS In Lemaréchal C., Sagastizabal C. (1994) An approach to variable metric bundle methods. In: Henry

J., Yvon JP. (eds) System Modelling and Optimization, LNCIS vol 197. Springer, Berlin, Heidelberg
1 (v, Az)
- 2
Hn +1 Hr |1'-'| |

whenever (v, u) > 0.

Theorem 10. If V[ is locally Lipschitzian, then p,, — 0. Make the following
additional assumptions: f has a (unique) minimal point x and a quadratic growth
condition holds: for some a > 0,

f(2) > f(z) +ale - 2.

Then f(x,) tends to f(r) g-superlinearly.
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How smooth is the regularization?
For Newton’s-type methods to apply, we need F to
have an invertible Hessian at x
A convex function ¢ has a generalized Hessian
Ho(xo) at xp if the gradient Vo(xp) exists and there
exists a symmetric positive semidefinite operator
Ho(xo) such that

d@(xo+d) C Vo(xo) + Hp(xo)d + [|d|[B

> If f at a generalized Hessian at p(xp), then the
Hessian of F exists at xp and

V2F(x0) = M — M[Hf(p(x0)) +M]~'M
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How smooth is the regularization?
For Newton’s-type methods to apply, we need F to
have an invertible Hessian at x

» We know that
f convex and lower sci = F is C"! everywhere

> F is C? everywhere —>
f is C? everywhere, too!

» The Hessian of F exists at xq if and only if p has a
Jacobian: V2F(xp) = M(1—p'(x0)).

» When the Jacobian exists, its image lies in a very
specific subspace

» By considering trajectories not far from that
subspace we can define a 2nd-order object of f,
even if f is not differentiable



Views of some functions
The half-and-half
f(x1,%2) = |x1|+ bx5
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Views of some functions

A max-variation
f(x1,X2) = max(|x1], bx3)
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The key is in decomposing the space

>»R'=VPU +Xx

» On the V-subspace the function is sharp

» On the U-subspace the function looks
smooth

The subspace deflnltlon depends on X

Nonsmoothness appears in a structured manner



The n-dimensional half-and-half function
For x € IR, given matrices A with nontrivial kernel,
B >0,
f(x) = max(|xTAx] ,xTBx)
has a unique minimizer at x*x = 0.
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The n-dimensional half-and-half function
For x € IR, given matrices A with nontrivial kernel,
B >0,

f(x) = max| |x"Ax| ,xTB)J(Q/
has a unique minimizer at xx = 0. On N/ (A) the
function is not differentiable, and the first term
vanishes: f| zr(4) looks smooth

R(AY N(A)
V parallel to df(x) u.ly




VUs of the function

flx)= max(\xTAx| ,XTBX)
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VUs of the function f(x) = max(|xTAx| ,XTBX>
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the valley of nonsmoothness,

where f looks “nice”?




VUs of the function f(x) = max(\xTAx| ,XTBX>

How can we track ;
the valley of nonsmoothness

where f Iooks hice”




YU-theory & primal-dual tracks

Ly(u,g) = infuev{f(x+udv)—(g,v)}
= f(x+uov(u))—(g,v(u))
— Ly(0,9) =f(X), — Ly(u,g) € C'(U)
smooth

— minimizer v = v(u) generates trajectories
tangent to U

3? X)) =
2(u) =X+udv(u) T T
Vg € ridf(X) same v(u) and Ly € 02 i.e., has a U -Hessian




Dual tracks

u u
\ i / )

x(u)=x+udv(u)  y(u)=argmin{|g|*: g € If(x(u)

(arg =0)

(2(u),7(v)) = (x,0) as u — 0
[EYN primal-dual track +
0 € ridf(x) allows for Newton-like method to
minimize f:
corrector — predictor method
proximal point — Newton method
V — U



Approximating primal-dual tracks
Fundamental theoretical result:
Proximal Points are on the primal track [

arg =0 € ridf(x), then Ju(x) :

) 1
plx) = argmin { 1)+ guly ~ P} = 2(u()
for all x = x with 1 = 11(x) : it|[x —X| — 0 as x — X

= use a bundle subroutine
to approximate the prox
and estimate the pair

(x(u),1(v))



Bundle approximation s, 1+05 ui.

i €=f(p)-f(p)
With bundle (x', ', g')
build M, a model for f near %, and find

1
RN » — aromin{ M) + 1y~ | ~ 2(u(x)

VLML s := argmin{|g|? : g € J
hatfch(p) ~ y(u(x))

1[\1i/M“good enough”: ¢ < o/11|s|?

By-product: local V U -decomposition, VU

P



Newton-like corrector-predictor V U algorithm
Given x and a bundle:

X(w)

- Corrector step: Solve (y —and y-QP)’s
= new p, s, VU, and determine H (U-Hessian)
- Predictor step: Solve HAu= —U's= xt =p+UAu



Convergence properties
— If infinite bundle steps, the inner sequence converges to a
minimizer of f
— Otherwise, either the outer sequence {p} is finite with s =0
and last p minimizes f
—or, {f(p)} is infinite and decreasing =
— either f unbounded below,
—or s — 0 and any acc({p}) minimizes f
when {c/11} —0.
If the U -Hessian at X is positive definite, 0 € ridf(x), and
— % =0(|]s|?), bounded {H™ '}, U — U,
— Dennis-Moré-like condition for {H}
— s approximates y superlinearly
= superlinear convergence of {p} to x



YU-Algorithm:

As u—0:
> The=fast track x(u)— x*
> The U-gradient, VLy(u; g3,)— 0

¥




YU-Algorithm:
As u— 0:

= The=fast track y(u)— x*
> [T The U-gradient, Viy(u; g},)— 0
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YU-Algorithm:
As u— 0:

= The=fast track y(u)— x*
> [T The U-gradient, Viy(u; g},)— 0

e

Primal-dual approximati D,
x = argmin{m<y)+5u|\y—x|\ BUNDLE
|

Viy ~ projomy(u))(0) 2nd QP

\\-"'_

\




R7RVSRUELE approximations

As u—0:

- The=fast track y(u)— x*
> [T The U-gradient, Vi (u; g},)— 0

Primal-dual approximatior

o argmin{M(y)+%u|yx| \;t\.B\UNDLE
Viy ~ projomy(u))(0) 2nd QP

\




R7RVSRUELE approximations

As u—0:

- The=fast track y(u)— x*
> [T The U-gradient, Vi (u; g},)— 0

Primal-dual approximatior

o argmin{M(y)+?u|yx| \;t\.B\UNDLE
Viy ~ projomy(u))(0) 2nd QP

Change x (serious step)
only when approximation is sufficiently good



YU-Algorithm is globally and superlinearly
convergent

Comparison with bundle method
Maxquad Saence Fiction

e S o e e
B. vl VU-N
ﬂ'go-o VU-gN
a © e N1CV2
2 °‘O°
. oo
g : %oq
= : oo
g TOEB oo g “,.0,9,66, e
I %0,
g ®og
= : @
10E-9}- - e af . boossaccoasccfoaaasestoasscastessascascassacceasta

number of serious iterations



YU-Algorithm is globally and superlinearly
convergent

Comparison with BFGS method




Concluding comments

On-going & Future work
O: Derivative-free variant
O: &-V U variant

F: Application to 2-stage stochastic
programming problems
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