Exact approaches for multi-objective binary quadratic optimization

Marianna De Santis

Università degli studi di Firenze Global Optimization Laboratory (GOL)

PGMODAYS 2025

Outline of the talk

Outline of the talk

- Basic Definitions
- Challenges in solving MOMINLPs
- Approximating the nondominated set of a MOMINLP: the enclosure concept
- Branch-and-bound methods for MOMINLPs:
 - Computation of upper bound sets
 - Computation of lower bound sets
 - Pruning conditions

Outline of the talk

- Basic Definitions
- Challenges in solving MOMINLPs
- Approximating the nondominated set of a MOMINLP: the enclosure concept
- Branch-and-bound methods for MOMINLPs:
 - Computation of upper bound sets
 - Computation of lower bound sets
 - Pruning conditions
- A Branch-and-Bound method for Multiobjective Binary Quadratic Problems (MO-BQPs)
 - Extending the QCR paradigm to the MO setting

Multiobjective MINLPs

A **Multiobjective Mixed Integer Nonlinear** programming problem (MOMINLP) can be formulated as follows:

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} & & (f_1(x), \dots, f_p(x))^T \\ & \text{s.t.} & & g_k(x) \leq 0 \ k = 1, \dots, m \\ & & & x_i \in \mathbb{Z} \ \forall i \in I, \end{aligned} \tag{MOMINLP}$$

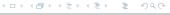
Multiobjective MINLPs

A **Multiobjective Mixed Integer Nonlinear** programming problem (MOMINLP) can be formulated as follows:

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} & & (f_1(x), \dots, f_p(x))^T \\ & \text{s.t.} & & g_k(x) \leq 0 \ k = 1, \dots, m \\ & & & x_i \in \mathbb{Z} \ \forall i \in I, \end{aligned} \tag{MOMINLP}$$

where

- $f_j, g_k : \mathbb{R}^n \to \mathbb{R}; \ j = 1, \dots, p; \ k = 1, \dots, m$
- the index set $I \subseteq \{1, \dots, n\}$ specifies which variables have to take integer values



MOMINLP: a powerful modeling tool!

Multiobjective mixed integer optimization problems arise in **many** application fields such as

- engineering
- finance
- design of water/gas distribution networks
- location or production planning
- emergency management

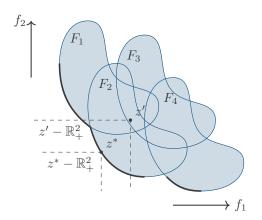
```
see e.g.
```

```
[Benvenuti et al. MMOR (2025)], [Pecci and Stoianov C&OR (2023)], [Amorosi et al. EngOpt (2022)], [Liu et al. C&OR (2014)], [Yenisey et al. Omega (2014)], [Ehrgott et al. INFOR (2009)],...
```

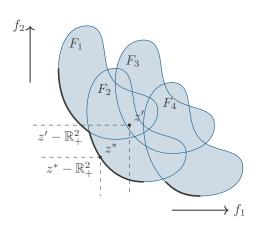

Basic definitions in multiobjective optimization

- point $x^* \in \mathcal{F}$ is **efficient** for (MOMINLP) if there is no $x \in \mathcal{F}$ with $f(x) \leq f(x^*)$ and $f(x) \neq f(x^*)$ The set of efficient points for (MOMINLP) is the **efficient set** of (MOMINLP)
- point $z^* = f(x^*) \in \mathbb{R}^p$ is **nondominated** for (MOMINLP) if $x^* \in \mathcal{F}$ is an efficient point for (MOMINLP)

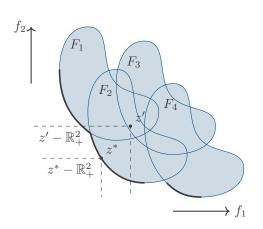
 The set of all nondominated points of (MOMINLP) is the **nondominated set** of (MOMINLP)



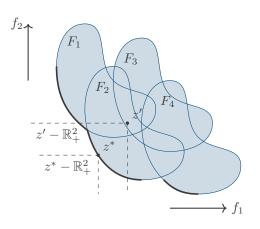
Example: feasible set in the image space of a bi-objective minlp instance



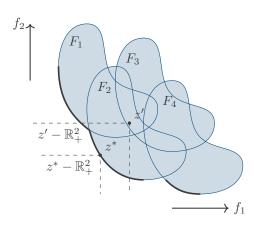
the union of all F_j
 describes the whole
 feasible set in the image
 space



- the union of all F_j
 describes the whole
 feasible set in the image
 space
- z* is a nondominated point and the preimage of z* is an efficient point



- the union of all F_j
 describes the whole
 feasible set in the image
 space
- z* is a nondominated point and the preimage of z* is an efficient point
- z' is dominated because $z^* \le z'$ and $z^* \ne z'$.

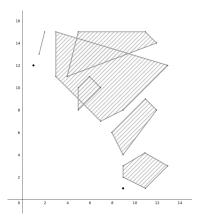


- the union of all F_j
 describes the whole
 feasible set in the image
 space
- z* is a nondominated point and the preimage of z* is an efficient point
- z' is dominated because $z^* \le z'$ and $z^* \ne z'$.
- all the points $z \in F_3$ are dominated

...little digression on BOMILPs!

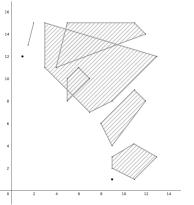
Bi-objective Mixed Integer Linear Programs

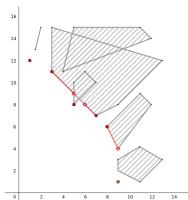
Example from [Fattahi and Turkay. A one direction search method to find the exact nondominated frontier of biobjective mixed-binary linear programming problems. EJOR, 2018.]



Bi-objective Mixed Integer Linear Programs

Example from [Fattahi and Turkay. A one direction search method to find the exact nondominated frontier of biobjective mixed-binary linear programming problems. EJOR, 2018.]





Solution approaches for MOMINLPs

Algorithms for multi-objective **mixed-integer** optimization problems compute an **approximation of the efficient or nondominated set**

Solution approaches for MOMINLPs

Algorithms for multi-objective **mixed-integer** optimization problems compute an **approximation of the efficient or nondominated set**

These approximation algorithms can be divided into two categories:

 algorithms that compute a representation, i.e., a finite subset, of the efficient or nondominated set

Solution approaches for MOMINLPs

Algorithms for multi-objective **mixed-integer** optimization problems compute an **approximation of the efficient or nondominated set**

These approximation algorithms can be divided into two categories:

- algorithms that compute a representation, i.e., a finite subset, of the efficient or nondominated set
- algorithms that compute a coverage, i.e., a superset, of the efficient or nondominated set

Approximating the nondominated set

In global approaches for single objective optimization the optimal solution $y^*=f(x^*)\in\mathbb{R}$ is approximated by some **lower bound** $l\in\mathbb{R}$ and some **upper bound** $u\in\mathbb{R}$ so that $l\leq y^*\leq u$,

Approximating the nondominated set

In global approaches for single objective optimization the optimal solution $y^*=f(x^*)\in\mathbb{R}$ is approximated by some **lower bound** $l\in\mathbb{R}$ and some **upper bound** $u\in\mathbb{R}$ so that $l\leq y^*\leq u$, or, equivalently,

$$\{y^*\} \subseteq (\{l\} + \mathbb{R}_+) \cap (\{u\} - \mathbb{R}_+)$$

Approximating the nondominated set

In global approaches for single objective optimization the optimal solution $y^* = f(x^*) \in \mathbb{R}$ is approximated by some **lower bound** $l \in \mathbb{R}$ and some **upper bound** $u \in \mathbb{R}$ so that $l \leq y^* \leq u$, or, equivalently,

$$\{y^*\} \subseteq (\{l\} + \mathbb{R}_+) \cap (\{u\} - \mathbb{R}_+)$$

This idea has been generalized to the multiobjective setting as:

$$\mathcal{N} \subseteq (L + \mathbb{R}^p_+) \cap (U - \mathbb{R}^p_+),$$

where $L, U \subseteq \mathbb{R}^p$ are nonempty sets.

[G. Eichfelder, P. Kirst, L. Meng, and O. Stein. "A general branch-and-bound framework for continuous global multiobjective optimization". JOGO 80(1) (2021), 195-227]

Definition of Enclosure

From [G. Eichfelder and L. Warnow. "An approximation algorithm for multi-objective optimization problems using a box-coverage". JOGO 83(2) (2021), 329-357]:

Definition

Let $L,U\subseteq\mathbb{R}^p$ be two nonempty, finite sets and $N\subseteq\mathbb{R}^p$ a nonempty set.

Definition of Enclosure

From [G. Eichfelder and L. Warnow. "An approximation algorithm for multi-objective optimization problems using a box-coverage". JOGO 83(2) (2021), 329-357]:

Definition

Let $L,U\subseteq\mathbb{R}^p$ be two nonempty, finite sets and $N\subseteq\mathbb{R}^p$ a nonempty set. Then the set

$$\mathcal{C} = \mathcal{C}(L, U) := (L + \mathbb{R}^p_+) \cap (U - \mathbb{R}^p_+) = \bigcup_{l \in L} \bigcup_{u \in U} [l, u]$$

is called (box) coverage given L and U.

Definition of Enclosure

From [G. Eichfelder and L. Warnow. "An approximation algorithm for multi-objective optimization problems using a box-coverage". JOGO 83(2) (2021), 329-357]:

Definition

Let $L,U\subseteq\mathbb{R}^p$ be two nonempty, finite sets and $N\subseteq\mathbb{R}^p$ a nonempty set. Then the set

$$\mathcal{C} = \mathcal{C}(L, U) := (L + \mathbb{R}^p_+) \cap (U - \mathbb{R}^p_+) = \bigcup_{l \in L} \bigcup_{u \in U} [l, u]$$

is called (box) coverage given L and U.

If $N \subseteq \mathcal{C}$, we call $\mathcal{C} \subseteq \mathbb{R}^p$ an **enclosure** of $N \subseteq \mathbb{R}^p$.

Example of enclosure C(L, U)

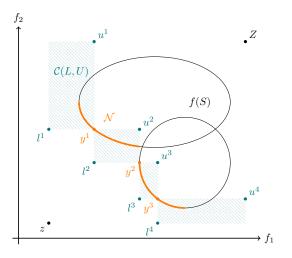


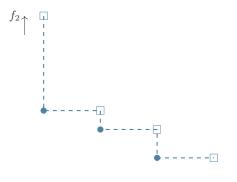
Figure: Enclosure $\mathcal{C}(L,U)\subseteq\mathbb{R}^2$ of $N=\{y^1,y^2,y^3\}$, with $L=\{l^1,l^2,l^3,l^4\}$ and $U=\{u^1,u^2,u^3,u^4\}$. (Thanks to Dr. Leo Warnow (TU Ilmenau) for the picture!)

Branch-and-Bound methods for MOMINLPs

main ingredients

- Computation of upper bound sets
- Computation of lower bound sets
- Pruning rules
- Branching rules

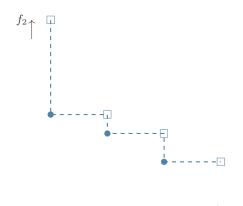
Computation of upper bound sets



Let $S \subset \mathbb{R}^p$ be a finite stable set of images of feasible points of (MO-BQP).

- points of a stable set S

Computation of upper bound sets

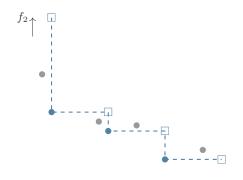


Let $S \subset \mathbb{R}^p$ be a finite stable set of images of feasible points of (MO-BQP).

An upper bound set $\mathcal{U}=U(S)$ is obtained computing the local upper bounds using the algorithm proposed in [K. Klamroth et al. "On the representation of the search region in multi-objective optimization". EJOR 245(3), (2015), 767-778]

- ullet points of a stable set S

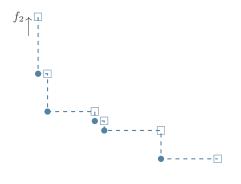
Computation of upper bound sets



As soon as new feasible points are found we try to include their images within the stable set S to improve the upper bound set $\mathcal U$

- ullet points of the stable set S
- \square local upper bounds defining the upper bound set $\mathcal{U} = U(S)$
- images of new feasible points found

Computation of upper bound sets



- S is kept as a stable set
- the upper bound set $\mathcal{U}=U(S)$ is updated with the algorithm in [K. Klamroth et al. "On the representation of the search region in multi-objective optimization". EJOR 245(3), (2015), 767-778]
- $\mathcal{N} \subseteq \mathcal{U} \mathbb{R}^p_+$,

- points of the stable set S
- $\ \square$ updated local upper bounds defining the upper bound set $\mathcal{U}=U(S)$

Computation of lower bound sets

Given (MOMINLP), the **upper image set** of its continuous relaxation is defined as

$$\mathcal{P} := \{ f(x) \in \mathbb{R}^p \mid g(x) \le 0 \ x \in \mathbb{R}^n \} + \mathbb{R}^p_+$$

Computation of lower bound sets

Given (MOMINLP), the **upper image set** of its continuous relaxation is defined as

$$\mathcal{P} := \{ f(x) \in \mathbb{R}^p \mid g(x) \le 0 \ x \in \mathbb{R}^n \} + \mathbb{R}^p_+$$

We say that $LB \subseteq \mathbb{R}^p$ is a **lower bound set** for (MOMINLP) if

$$\mathcal{P} \subseteq LB + \mathbb{R}^p_+$$

Computation of lower bound sets

Linear supporting hyperplanes [M.Ehrgott and X. Gandibleux. "Bound sets for biobjective combinatorial optimization problems." C&OR 34(9) (2007), 2674-2694]

Let $W \subseteq \{w \in \mathbb{R}^p_+ \mid ||w||_1 = 1\}$ be a finite set of nonnegative vectors which includes all p unit vectors.

Computation of lower bound sets

Linear supporting hyperplanes [M.Ehrgott and X. Gandibleux. "Bound sets for biobjective combinatorial optimization problems." C&OR 34(9) (2007), 2674-2694]

Let $W\subseteq\{w\in\mathbb{R}^p_+\mid ||w||_1=1\}$ be a finite set of nonnegative vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image set \mathcal{P} are obtained by solving single-objective subproblems with $w \in W$:

Computation of lower bound sets

Linear supporting hyperplanes [M.Ehrgott and X. Gandibleux. "Bound sets for biobjective combinatorial optimization problems." C&OR 34(9) (2007), 2674-2694]

Let $W\subseteq\{w\in\mathbb{R}^p_+\mid ||w||_1=1\}$ be a finite set of nonnegative vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image set $\mathcal P$ are obtained by solving single-objective subproblems with $w\in W$:

$$\theta(w) := \min\{w^{\top} f(x) \mid g(x) \le 0, x \in \mathbb{R}^n\}$$

Computation of lower bound sets

Linear supporting hyperplanes [M.Ehrgott and X. Gandibleux. "Bound sets for biobjective combinatorial optimization problems." C&OR 34(9) (2007), 2674-2694]

Let $W\subseteq\{w\in\mathbb{R}^p_+\mid ||w||_1=1\}$ be a finite set of nonnegative vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image set \mathcal{P} are obtained by solving single-objective subproblems with $w \in W$:

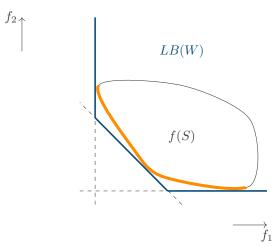
$$\theta(w) := \min\{w^{\top} f(x) \mid g(x) \le 0, x \in \mathbb{R}^n\}$$

A lower bound set can then be defined as

$$LB(W) := \bigcap_{w \in W} \{ y \in \mathbb{R}^p \mid w^\top y \ge \theta(w) \}$$

Computation of lower bound sets

 $W = \{(1,0), (0,1), (0.5,0.5)\}$



$$S = \{ x \in \mathbb{R}^n \mid g(x) \le 0 \}$$

Pruning condition: comparing ${\cal U}$ with LB

$$\forall \ u \in \mathcal{U}: \ u \notin LB + \mathbb{R}^p_+. \tag{Cond}$$

Pruning condition: comparing \mathcal{U} with LB

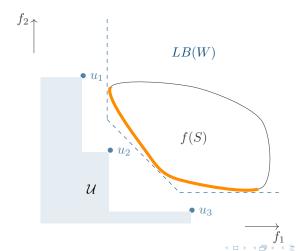
$$\forall \ u \in \mathcal{U}: \ u \notin LB + \mathbb{R}^p_+. \tag{Cond}$$

Lemma

Assume that $S \neq \emptyset$. If (Cond) holds then for the nondominated set $\mathcal N$ of (MOMINLP) we have $\mathcal N \cap (LB + \mathbb R^p_+) = \emptyset$

Pruning condition: comparing ${\cal U}$ with LB

$$S \neq \emptyset$$



Branching rules

* Spatial branch-and-bound methods: intervals are partitioned for each variable

[G. Eichfelder, O. Stein, L. Warnow; "A solver for multiobjective mixed-integer convex and nonconvex optimization", JOTA, (2024)]

[M. De Santis, G. Eichfelder, J. Niebling, S. Rocktäschel; "Solving multiobjective mixed integer convex optimization problems", SIOPT, (2020)]

* Look for efficient integer assignments: branching on integer variables

[M. De Santis, G. Eichfelder, D. Patria, L. Warnow, "Using dual relaxations in multiobjective mixed-integer convex quadratic programming", JOGO, (2025)]

[M. De Santis, G. Eichfelder, "A decision space algorithm for multiobjective convex quadratic integer optimization", C & OR, (2021)]

...

MObBQ: a branch-and-bound method for multi-objective binary quadratic programs

Marianna De Santis, Lucas Létocart, Yue Zhang

M. De Santis, L. Létocart, Y. Zhang. *Quadratic Convex Reformulations for Multi-Objective Binary Quadratic Programming.*Optimization Online, 2025.

Multi-objective binary quadratic programs

problem formulation

$$\min_{x} \quad (q_1(x), \dots, q_p(x))^{\top}$$

 $x_i \in \{0, 1\}$

s.t.
$$Ax \leq b$$

$$i \in [n],$$

where

$$q_j(x) = x^{\top} Q_j x + (c^j)^{\top} x, j \in [p]$$

(MO-BQP)

Multi-objective binary quadratic programs

problem formulation

$$\min_x \quad (q_1(x),\dots,q_p(x))^\top$$
 s.t. $Ax \leq b$ (MO-BQP)
$$x_i \in \{0,1\} \qquad i \in [n],$$

where

$$q_j(x) = x^{\top} Q_j x + (c^j)^{\top} x, j \in [p]$$

with

ullet $Q_j \in \mathcal{S}^n, j \in [p]$ not necessarily positive semidefinite,

$$\min_x \quad (q_1(x),\dots,q_p(x))^\top$$
 s.t. $Ax \leq b$ (MO-BQP)
$$x_i \in \{0,1\} \qquad i \in [n],$$

where

$$q_j(x) = x^{\top} Q_j x + (c^j)^{\top} x, j \in [p]$$

with

- ullet $Q_j \in \mathcal{S}^n, j \in [p]$ not necessarily positive semidefinite,
- $\bullet \ c^j \in \mathbb{R}^n, j \in [p],$
- $\bullet \ A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m.$

Examples of MO-BQPs

(MO-BQP) includes multi-objective combinatorial problems such as:

Examples of MO-BQPs

(MO-BQP) includes multi-objective combinatorial problems such as:

Multi-objective Max-Cut problem (MO-MCP)

Unconstrained MO-BQP

Examples of MO-BQPs

(MO-BQP) includes multi-objective combinatorial problems such as:

Multi-objective Max-Cut problem (MO-MCP)

Unconstrained MO-BQP

Multi-objective Quadratic Knapsack

in our numerical results, we consider the MultiObjective k-item Quadratic Knapsack problem (MO-kQKP)

Compute a starting stable set $S \subset \mathbb{R}^p$ and an upper bound set $\mathcal{U} = U(S)$

Compute a starting stable set $S \subset \mathbb{R}^p$ and an upper bound set $\mathcal{U} = U(S)$ Set $d = 0, \ r_d = \emptyset, \ \mathcal{L} := \{N^{r_d}\}$

Compute a starting stable set $S\subset\mathbb{R}^p$ and an upper bound set $\mathcal{U}=U(S)$ Set $d=0,\ r_d=\emptyset,\ \mathcal{L}:=\{N^{r_d}\}$ While $\mathcal{L}\neq\emptyset$ do

Compute a starting stable set $S \subset \mathbb{R}^p$ and an upper bound set $\mathcal{U} = U(S)$ Set d = 0, $r_d = \emptyset$, $\mathcal{L} := \{N^{r_d}\}$

While $\mathcal{L} \neq \emptyset$ do

Choose $N^{r_d} \in \mathcal{L}$, Update $\mathcal{L} \leftarrow \mathcal{L} \setminus \{N^{r_d}\}$

Compute a lower bound set LB^{r_d} and evaluate $Prune(N^{r_d})$

```
Compute a starting stable set S \subset \mathbb{R}^p and an upper bound set \mathcal{U} = U(S) Set d = 0, \ r_d = \emptyset, \ \mathcal{L} := \{N^{r_d}\} While \mathcal{L} \neq \emptyset do  \text{Choose } N^{r_d} \in \mathcal{L}, \ \text{Update } \mathcal{L} \leftarrow \mathcal{L} \setminus \{N^{r_d}\}  Compute a lower bound set LB^{r_d} and evaluate \text{Prune}(N^{r_d}) If (\text{not Prune}(N^{r_d})) then  \text{If } (\text{CheckInt}(N^{r_d})) \text{ then}  Update S including S a stable set S update S update S including S and keeping S a stable set S update S including S and keeping S a stable set S update S including S and keeping S a stable set S update S including S and keeping S a stable set S update S including S incl
```

End While

```
Compute a starting stable set S \subset \mathbb{R}^p and an upper bound set \mathcal{U} = U(S)
Set d = 0. r_d = \emptyset. \mathcal{L} := \{N^{r_d}\}
While \mathcal{L} \neq \emptyset do
       Choose N^{r_d} \in \mathcal{L}. Update \mathcal{L} \leftarrow \mathcal{L} \setminus \{N^{r_d}\}
       Compute a lower bound set LB^{r_d} and evaluate Prune (N^{r_d})
       If (not Prune (N^{r_d})) then
              If (CheckInt(N^{r_d})) then
                     Update S including f(\bar{x}) and keeping S a stable set
                     Update \mathcal{U} = U(S)
              Else
                     Set r_{d+1}^0 = (r_d, 0), r_{d+1}^1 = (r_d, 1)
                     Update \mathcal{L} \leftarrow \mathcal{L} \cup \{N^{r_{d+1}^0}, N^{r_{d+1}^1}\}
       End If
```

Correctness of MObbQ

Given a node N^{r_d} , we define the boolean function $Prune(N^{r_d})$ as

$$\mathtt{Prune}(N^{r_d}) := (\mathcal{F}^{r_d} = \emptyset) \vee (\forall \ u \in \mathcal{U}: \ u \not\in LB^{r_d}).$$

Correctness of MObBQ

Given a node N^{r_d} , we define the boolean function Prune (N^{r_d}) as

$$\mathtt{Prune}(N^{r_d}) := (\mathcal{F}^{r_d} = \emptyset) \vee (\forall \ u \in \mathcal{U}: \ u \not\in LB^{r_d}).$$

Proposition

If $Prune(N^{r_d}) = 1$ then no efficient point $\bar{x} \in \{0,1\}^n$ of (MO-BQP) is such that $(\bar{x}_1, \dots, \bar{x}_d) = (r_1, \dots, r_d)$.

Correctness of MObBQ

Given a node N^{r_d} , we define the boolean function $Prune(N^{r_d})$ as

$$\mathtt{Prune}(N^{r_d}) := (\mathcal{F}^{r_d} = \emptyset) \vee (\forall \ u \in \mathcal{U}: \ u \not\in LB^{r_d}).$$

Proposition

If $Prune(N^{r_d}) = 1$ then no efficient point $\bar{x} \in \{0,1\}^n$ of (MO-BQP) is such that $(\bar{x}_1, \dots, \bar{x}_d) = (r_1, \dots, r_d)$.

Proposition

MObBQ stops after a finite number of iterations returning the stable set S, that is the nondominated set of (MO-BQP).

Computation of lower bound sets at the nodes

Restricted continuous relaxation

$$\begin{aligned} & \min & & (q_1(x),\dots,q_p(x))^T \\ & \text{s.t.} & & x_1 = r_1 \\ & & x_2 = r_2 \\ & & \vdots \\ & & x_d = r_d \\ & & Ax \leq b \\ & & x \in \mathbb{R}^n \end{aligned}$$

Computation of lower bound sets at the nodes

Restricted continuous relaxation

$$\begin{aligned} & \min \quad & (q_1(x),\ldots,q_p(x))^T \\ & \text{s.t.} \quad & x_1 = r_1 \\ & x_2 = r_2 \\ & & \vdots \\ & x_d = r_d \\ & Ax \leq b \\ & x \in \mathbb{R}^n \end{aligned} \qquad \begin{aligned} & \min \quad & (q_1^r(x),\ldots,q_p^r(x))^T \\ & = \quad \text{s.t.} \quad & A^d x \leq b^r \\ & x \in \mathbb{R}^{n-d} \end{aligned}$$

single objective case

Consider the following single-objective binary quadratic problem

$$\min_{x} \quad q(x) = x^{\top}Qx + c^{\top}x$$
 s.t. $Ax \le b$ (BQP)
$$x_i \in \{0,1\} \qquad i \in \{1,\dots,n\},$$

¹ Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method." Discret.

Appl. Math. 157, 1185–1197 (2009).

single objective case

Consider the following single-objective binary quadratic problem

$$\min_{x} \quad q(x) = x^{\top}Qx + c^{\top}x$$
 s.t. $Ax \le b$ (BQP)
$$x_i \in \{0,1\} \qquad i \in \{1,\dots,n\},$$

For any feasible point $x \in \{0,1\}^n$ it holds:

- $x_i^2 = x_i, \quad i \in \{1, \dots, n\}$
- $(A_{=}x b_{=})^{2} = (A_{=}x b_{=})^{T}(A_{=}x b_{=}) = 0$

¹ Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method." Discret. Appl. Math. 157, 1185–1197 (2009).

single objective case

Introducing the parameters $\delta \in \mathbb{R}^n$ and $\beta \in \mathbb{R}$ problem BQP can be reformulated as

$$\begin{split} \min_{x} & \quad q_{\delta,\beta}(x) = q(x) + \sum_{i=1}^{n} \delta_{i}(x_{i}^{2} - x_{i}) + \beta(A_{=}x - b_{=})^{2} \\ \text{s.t.} & \quad Ax \leq b \\ & \quad x_{i} \in \{0,1\} \quad i \in \{1,\dots,n\}. \end{split}$$
 (QCR_(\delta,\beta))

¹ Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method." Discret.

Appl. Math. 157, 1185–1197 (2009).

single objective case

Introducing the parameters $\delta \in \mathbb{R}^n$ and $\beta \in \mathbb{R}$ problem BQP can be reformulated as

$$\begin{split} \min_{x} \quad & q_{\delta,\beta}(x) = q(x) + \sum_{i=1}^{n} \delta_{i}(x_{i}^{2} - x_{i}) + \beta(A_{=}x - b_{=})^{2} \\ \text{s.t.} \quad & Ax \leq b \\ & x_{i} \in \{0,1\} \quad i \in \{1,\dots,n\}. \end{split} \tag{QCR}_{(\delta,\beta)}$$

Note that $q_{\delta,\beta}(x)$ is a **quadratic function** depending on the matrix

$$Q_{\delta,\beta} = Q + diag(\delta) + \beta A_{=}^{\top} A_{=},$$

¹ Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method." Discret. Appl. Math. 157, 1185-1197 (2009). ◆□▶◆同▶◆三▶◆三 夕久○

single objective case

Introducing the parameters $\delta \in \mathbb{R}^n$ and $\beta \in \mathbb{R}$ problem BQP can be reformulated as

$$\begin{aligned} \min_{x} \quad & q_{\delta,\beta}(x) = q(x) + \sum_{i=1}^{n} \delta_{i}(x_{i}^{2} - x_{i}) + \beta(A_{=}x - b_{=})^{2} \\ \text{s.t.} \quad & Ax \leq b \\ & x_{i} \in \{0,1\} \quad i \in \{1,\dots,n\}. \end{aligned} \tag{QCR}_{(\delta,\beta)}$$

Any LB on $(QCR_{(\delta,\beta)})$ is a valid LB on (BQP), for any $(\delta,\beta) \in \mathbb{R}^{n+1}$

¹ Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method." Discret. Appl. Math. 157, 1185-1197 (2009). ◆□▶◆同▶◆三▶◆三 夕久○

single objective case

look for the best $(\delta, \beta) \in \mathbb{R}^{n+1}$, keeping $q_{\delta, \beta}$ convex:

¹ Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method." Discret. Appl. Math. 157, 1185–1197 (2009).

single objective case

look for the $best(\delta, \beta) \in \mathbb{R}^{n+1}$, keeping $q_{\delta, \beta}$ convex:

$$\max_{\substack{(\delta,\beta)\in\mathbb{R}^{n+1}\\Q_{\delta,\beta}\succeq 0}}\theta(\delta,\beta)=\max_{\substack{(\delta,\beta)\in\mathbb{R}^{n+1}\\Q_{\delta,\beta}\succeq 0}}\min\{q_{\delta,\beta}(x)\mid Ax\leq b,\ x\in[0,1]^n\},$$

¹ Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method." Discret. Appl. Math. 157, 1185-1197 (2009).

single objective case

look for the $best(\delta,\beta) \in \mathbb{R}^{n+1}$, keeping $q_{\delta,\beta}$ convex:

$$\theta(\delta^*, \beta^*) = \max_{\substack{(\delta, \beta) \in \mathbb{R}^{n+1} \\ Q_{\delta, \beta} \succeq 0}} \theta(\delta, \beta),$$

 (δ^*, β^*) are obtained as the **optimal dual variables of an SDP**

¹ Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method." Discret. Appl. Math. 157, 1185–1197 (2009).

$$(SDP_{QCR}) \min_{x} c^{\top}x + \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij}X_{ij}$$
s.t. $X_{ii} = x_{i}, i \in [n]$ (1)
$$\langle A_{=}A_{=}^{\top}, X \rangle - 2b_{=}^{\top}A_{=}x = -b_{=}^{2}$$
 (2)
$$Ax \leq b$$

$$\begin{pmatrix} 1 & x^{\top} \\ x & X \end{pmatrix} \succeq 0$$

$$x \in \mathbb{R}^{n}, X \in \mathcal{S}^{n}.$$

The optimal δ^* and β^* are the optimal dual variables associated with constraints (1) and (2).

¹ Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method." Discret. Appl. Math. 157, 1185–1197 (2009).

Ignoring the constraints

The Unconstrained Quadratic Convex Reformulation (UQCR)

Ignoring $A_{=}x=b_{=}$, we obtain:

$$\begin{aligned} & \min_{x} \quad q_{\delta}(x) = q(x) + \sum_{i=1}^{n} \delta_{i}(x_{i}^{2} - x_{i}) \\ & \text{s.t.} \quad Ax \leq b \\ & x_{i} \in \{0, 1\} \\ & i \in \{1, \dots, n\}. \end{aligned} \tag{UQCR}_{\delta}$$

Ignoring the constraints

The Unconstrained Quadratic Convex Reformulation (UQCR)

Ignoring $A_{=}x = b_{=}$, we obtain:

$$\begin{aligned} & \min_{x} \quad q_{\delta}(x) = q(x) + \sum_{i=1}^{n} \delta_{i}(x_{i}^{2} - x_{i}) \\ & \text{s.t.} \quad Ax \leq b \\ & x_{i} \in \{0, 1\} \end{aligned} \qquad i \in \{1, \dots, n\}.$$

The optimal $\delta^{u,*} \in \mathbb{R}^n$ is such that

$$\theta(\delta^{u,*}) = \max_{\substack{\delta \in \mathbb{R}^n \\ Q_{\delta} \succeq 0}} \theta(\delta) = \max_{\substack{\delta \in \mathbb{R}^n \\ Q_{\delta} \succeq 0}} \min_{\substack{Ax \le b \\ x \in [0,1]^n}} q_{\delta}(x),$$

where $Q_{\delta} = Q + diag(\delta)$.

$$\theta(\delta^{u,*}) \leq \theta(\delta^*, \beta^*)$$

Multi-objective Quadratic Convex Reformulation

We can compute $\delta_{0,j}^{u,*} \in \mathbb{R}^n$ and $(\delta_{0,j}^*, \beta_{0,j}^*) \in \mathbb{R}^{n+1}$ for each objective function and reformulate (MO-BQP) as:

We can compute $\delta_{0,j}^{u,*} \in \mathbb{R}^n$ and $(\delta_{0,j}^*, \beta_{0,j}^*) \in \mathbb{R}^{n+1}$ for each objective function and reformulate (MO-BQP) as:

$$\begin{split} & \min_{x} & \left((q_{1})_{\delta_{0,1}^{u,*}}(x), \dots, (q_{p})_{\delta_{0,p}^{u,*}}(x) \right) & \quad & \min_{x} & \left((q_{1})_{(\delta_{0,1}^{*}, \beta_{0,1}^{*})}(x), \dots, (q_{p})_{(\delta_{0,p}^{*}, \beta_{0,p}^{*})}(x) \right) \\ & \text{s.t.} & \quad & Ax \leq b & \quad & \text{s.t.} & \quad & Ax \leq b \\ & \quad & x_{i} \in \{0,1\} \quad i \in [n] & \quad & \quad & x_{i} \in \{0,1\} \quad i \in [n] \\ & \quad & \quad & (\text{MO-UQCR}) & \quad & (\text{MO-QCR}) \end{split}$$

We can compute $\delta_{0,j}^{u,*} \in \mathbb{R}^n$ and $(\delta_{0,j}^*, \beta_{0,j}^*) \in \mathbb{R}^{n+1}$ for each objective function and reformulate (MO-BQP) as:

$$\begin{split} & \min_{x} \ \ ((q_{1})_{\delta_{0,1}^{u,*}}(x), \dots, (q_{p})_{\delta_{0,p}^{u,*}}(x)) & \quad & \min_{x} \ \ ((q_{1})_{(\delta_{0,1}^{*},\beta_{0,1}^{*})}(x), \dots, (q_{p})_{(\delta_{0,p}^{*},\beta_{0,p}^{*})}(x)) \\ & \text{s.t.} \quad & Ax \leq b & \quad & \text{s.t.} \quad & Ax \leq b \\ & \quad & x_{i} \in \{0,1\} \quad i \in [n] & \quad & x_{i} \in \{0,1\} \quad i \in [n] \\ & \quad & \quad & \text{(MO-UQCR)} & \quad & \end{split}$$

Proposition

Let \mathcal{N} , \mathcal{N}_{UQCR} and \mathcal{N}_{QCR} be the nondominated sets of (MO-BQP), (MO-UQCR) and (MO-QCR), respectively. It holds

$$\mathcal{N} = \mathcal{N}_{UQCR} = \mathcal{N}_{QCR}.$$

At a generic node of the branch-and-bound tree, we have a vector of fixings $r_d \in \{0,1\}^d$ and (MO-BQP) rd can be reformulated as:

At a generic node of the branch-and-bound tree, we have a vector of fixings $r_d \in \{0,1\}^d$ and (MO-BQP) rd can be reformulated as:

At a generic node of the branch-and-bound tree, we have a vector of fixings $r_d \in \{0,1\}^d$ and (MO-BQP) rd can be reformulated as:

$$\begin{split} & \min_{x} & \quad ((q_{1}^{rd})_{\delta_{1}^{u,*}}(x), \dots, (q_{p}^{rd})_{\delta_{p}^{u,*}}(x)) & \quad \min_{x} & \quad ((q_{1}^{rd})_{(\delta_{1}^{*},\beta_{1}^{*})}(x), \dots, (q_{p}^{rd})_{(\delta_{p}^{*},\beta_{p}^{*})}(x)) \\ & \text{s.t.} & \quad A^{d}x \leq b^{rd} & \quad \text{s.t.} & \quad A^{d}x \leq b^{rd} \\ & \quad x \in \{0,1\}^{n-d} & \quad x \in \{0,1\}^{n-d} \end{split}$$

Each multi-objective quadratic convex reformulation comes at the price of solving p semidefinite programs

Outer approximations of the upper image sets of the relaxations of MO-QCR rd and MO-UQCR rd

Let $W \subseteq \{w \in \mathbb{R}^p_+ \mid ||w||_1 = 1\}$ be a finite set of nonnegative vectors which includes all p unit vectors.

Outer approximations of the upper image sets of the relaxations of MO-QCR rd and MO-UQCR rd

Let $W\subseteq\{w\in\mathbb{R}^p_+\mid||w||_1=1\}$ be a finite set of nonnegative vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image sets at the node are obtained by solving single-objective subproblems with $w \in W$:

Outer approximations of the upper image sets of the relaxations of MO-QCR rd and MO-UQCR rd

Let $W\subseteq\{w\in\mathbb{R}^p_+\mid ||w||_1=1\}$ be a finite set of nonnegative vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image sets at the node are obtained by solving single-objective subproblems with $w \in W$:

$$\theta^{r_d}(w) := \min\{w^\top (q^{r_d})_{(\delta^*,\beta^*)}(x) \mid A^d x \leq b^{r_d}, x \in [0,1]^{n-d}\}$$

$$\theta_u^{r_d}(w) := \min\{w^\top (q^{r_d})_{\delta^{u,*}}(x) \mid A^d x \leq b^{r_d}, x \in [0,1]^{n-d}\}$$

Outer approximations of the upper image sets of the relaxations of MO-QCR rd and MO-UQCR rd

Let $W\subseteq\{w\in\mathbb{R}^p_+\mid ||w||_1=1\}$ be a finite set of nonnegative vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image sets at the node are obtained by solving single-objective subproblems with $w \in W$:

$$\begin{split} \theta^{r_d}(w) &:= \min\{w^\top (q^{r_d})_{(\delta^*,\beta^*)}(x) \mid A^d x \leq b^{r_d}, x \in [0,1]^{n-d}\} \\ \theta^{r_d}_u(w) &:= \min\{w^\top (q^{r_d})_{\delta^{u,*}}(x) \mid A^d x \leq b^{r_d}, x \in [0,1]^{n-d}\} \end{split}$$

Note each subproblem is a continuous convex quadratic program

Outer approximations of the upper image sets of the relaxations of MO-QCR rd and MO-UQCR rd

Once the |W| continuous single-objective convex quadratic subproblems are solved, the **lower bound sets** are then defined as:

Outer approximations of the upper image sets of the relaxations of MO-QCR rd and MO-UQCR rd

Once the |W| continuous single-objective convex quadratic subproblems are solved, the **lower bound sets** are then defined as:

$$LB_{QCR^{r_d}}^{r_d}(W) := \bigcap_{w \in W} \{ y \in \mathbb{R}^p \mid w^\top y \ge \theta^{r_d}(w) \}$$

$$LB_{UQCR^{r_d}}^{r_d}(W) := \bigcap_{w \in W} \{ y \in \mathbb{R}^p \mid w^\top y \ge \theta_u^{r_d}(w) \}$$

Outer approximations of the upper image sets of the relaxations of MO-QCR rd and MO-UQCR rd

Once the |W| continuous single-objective convex quadratic subproblems are solved, the **lower bound sets** are then defined as:

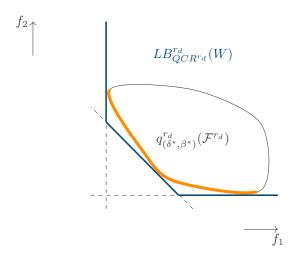
$$LB^{r_d}_{QCR^{r_d}}(W) := \bigcap_{w \in W} \{ y \in \mathbb{R}^p \mid w^\top y \ge \theta^{r_d}(w) \}$$

$$LB_{UQCR^{r_d}}^{r_d}(W) := \bigcap_{w \in W} \{ y \in \mathbb{R}^p \mid w^\top y \ge \theta_u^{r_d}(w) \}$$

The computation of a lower bound set at a node comes at the price of solving p semidefinite programs and |W| single-objective convex quadratic programs

Lower bound sets as linear outer approximations

 $W = \{(1,0),\,(0,1),\,(0.5,0.5)\}$



 $\mathcal{F}^{r_d} = \{x \in [0,1]^{n-d} \mid A^dx \leq b^{r_d}\} \text{ is the restricted feasible set at } N^{r_d}$

Relaxations at the nodes

Comparing the lower bound sets

Proposition

$$LB^{r_d}_{QCR^{r_d}}(W) \subseteq LB^{r_d}_{UQCR^{r_d}}(W)$$

Relaxations at the nodes

Comparing the lower bound sets

Proposition

$$LB^{r_d}_{QCR^{r_d}}(W)\subseteq LB^{r_d}_{UQCR^{r_d}}(W)$$

$$LB^{r_d}_{UQCR^{r_d}}(W)\subseteq LB^{r_d}_{UQCR^0}(W)\quad \text{and}\quad LB^{r_d}_{QCR^{r_d}}(W)\subseteq LB^{r_d}_{QCR^0}(W)$$

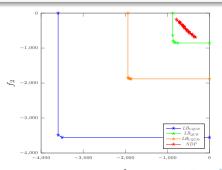
Relaxations at the nodes

Comparing the lower bound sets

Proposition

$$LB^{r_d}_{QCR^{r_d}}(W) \subseteq LB^{r_d}_{UQCR^{r_d}}(W)$$

$$LB^{r_d}_{UQCR^{r_d}}(W)\subseteq LB^{r_d}_{UQCR^0}(W)\quad \text{and}\quad LB^{r_d}_{QCR^{r_d}}(W)\subseteq LB^{r_d}_{QCR^0}(W)$$



Advantage of static branching

Avoiding to solve p SDPs at each node

In our implementation of MObBQ, the order in which binary variables are fixed is **predetermined**

Advantage of static branching

Avoiding to solve p SDPs at each node

In our implementation of ${\tt MObBQ}$, the order in which binary variables are fixed is ${\tt predetermined}$

at a generic level $d \in [n] \cup \{0\}$ of the search tree, the variables x_1, \dots, x_d are fixed.

Advantage of static branching

Avoiding to solve p SDPs at each node

In our implementation of MObBQ, the order in which binary variables are fixed is **predetermined**

$$\downarrow \downarrow$$

at a generic level $d \in [n] \cup \{0\}$ of the search tree, the variables x_1, \dots, x_d are fixed.

$$\Downarrow$$

The subproblems at the nodes belonging to the **same level** $d \in [n]$ share the **same matrices** Q_i^d , $j \in [p]$.

Computation of $\delta_i^{u,*}$, $j \in [p]$ in pre-processing

 $p \times n$ SDPs to be solved in total

For each level $d=0,\ldots,n-1$ and each $j\in[p]$ we address:

$$(\mathsf{SDP}_{UQCR})_j^d \quad \min_x \qquad \sum_{i=1}^n \sum_{\ell=1}^n (Q_j^d)_{i\ell} \, X_{il}$$

$$\mathsf{s.t.} \qquad X_{ii} = x_i, \quad i \in [n-d]$$

$$\begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0$$

$$x \in \mathbb{R}^{n-d}, \, X \in \mathcal{S}^{n-d}$$

Computation of $\delta_i^{u,*}$, $j \in [p]$ in pre-processing

 $p \times n$ SDPs to be solved in total

For each level $d=0,\ldots,n-1$ and each $j\in[p]$ we address:

$$(\mathsf{SDP}_{UQCR})_j^d \quad \min_x \qquad \sum_{i=1}^{n-a} \sum_{\ell=1}^{n-a} (Q_j^d)_{i\ell} \, X_{i\ell}$$

$$\mathsf{s.t.} \qquad X_{ii} = x_i, \quad i \in [n-d]$$

$$\begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0$$

$$x \in \mathbb{R}^{n-d}, \, X \in \mathcal{S}^{n-d}$$

N.B. the linear term of the objective functions cannot be considered

If A and b have nonnegative entries

$$\{x \in [0,1]^{n-d} \mid A_{=}^{d}x = b_{=}^{r_d}\} \subseteq \{x \in [0,1]^{n-d} \mid A_{=}^{d}x \le b_{=}\}.$$

If A and b have nonnegative entries

$$\{x \in [0,1]^{n-d} \mid A_=^d x = b_=^{r_d}\} \subseteq \{x \in [0,1]^{n-d} \mid A_=^d x \le b_=\}.$$

$$(\mathsf{SDP}_{UQCR^*})_j^d \quad \min_x \qquad \sum_{i=1}^{n-d} \sum_{\ell=1}^{n-d} (Q_j)_{i\ell}^d \, X_{ij}$$

$$\mathsf{s.t.} \qquad X_{ii} = x_i, \quad i \in [n-d]$$

$$A^d x \leq b \qquad \qquad \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0$$

$$x \in \mathbb{R}^{n-d}, \ X \in \mathcal{S}^{n-d}.$$

Numerical results

We compared five different versions of MObbQ algorithms:

- \lozenge МОъВQ $_{UQCR}$: (MO-UQCR) rd is adopted at every node
- \lozenge MObBQ $_{UQCR^*}$: the *improved* UQCR is adopted at every node
- \lozenge M0bBQ $_{QCR+UQCR}$: (MO-QCR) is adopted at the root node and (MO-UQCR) rd is adopted at every other node
- \lozenge M0bBQ $_{QCR+UQCR^*}$: (MO-QCR) is adopted at the root node and the <code>improved</code> UQCR is adopted at every other node
- \lozenge MObBQ $_{QCR^0}$ (or MObBQ $_{UQCR^0}$): (MO-QCR) (or (MO-UQCR)) is adopted to reformulate (MO-QCR)

♦ All versions of MO-bBQ are implemented in JULIA v.1.11.2. The implementation is available at https://github.com/YueO925/MultiObjectiveAlgorithms.jl

♦ All versions of MO-bBQ are implemented in JULIA v.1.11.2. The implementation is available at https://github.com/YueO925/MultiObjectiveAlgorithms.jl ...hopefully soon part of:

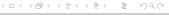
- ♦ All versions of MO-bBQ are implemented in JULIA v.1.11.2. The implementation is available at https://github.com/YueO925/MultiObjectiveAlgorithms.jl
- ♦ We invoke CSDP.JL solver v.6.2.0 and GUROBI.JL solver v12.0.0 (academic license).

- ♦ All versions of MO-bBQ are implemented in JULIA v.1.11.2. The implementation is available at https://github.com/YueO925/MultiObjectiveAlgorithms.jl
- ♦ We invoke CSDP.JL solver v.6.2.0 and GUROBI.JL solver v12.0.0 (academic license).
- \Diamond The number of hyperplanes considered for the computation of LBS is set to |W|=p+1.

- ♦ All versions of MO-bBQ are implemented in JULIA v.1.11.2. The implementation is available at https://github.com/YueO925/MultiObjectiveAlgorithms.jl
- ♦ We invoke CSDP.JL solver v.6.2.0 and GUROBI.JL solver v12.0.0 (academic license).
- \Diamond The number of hyperplanes considered for the computation of LBS is set to |W|=p+1.
- \Diamond The starting stable set S (and then the starting upperbound set) is set as the empty set.

- ♦ All versions of MO-bBQ are implemented in JULIA v.1.11.2. The implementation is available at https://github.com/YueO925/MultiObjectiveAlgorithms.jl
- ♦ We invoke CSDP.JL solver v.6.2.0 and GUROBI.JL solver v12.0.0 (academic license).
- \Diamond The number of hyperplanes considered for the computation of LBS is set to |W|=p+1.
- \Diamond The starting stable set S (and then the starting upperbound set) is set as the empty set.
- ♦ The time limit (CPU) is set to 1800 seconds.

- ♦ All versions of MO-bBQ are implemented in JULIA v.1.11.2. The implementation is available at https://github.com/YueO925/MultiObjectiveAlgorithms.jl
- ♦ We invoke CSDP.JL solver v.6.2.0 and GUROBI.JL solver v12.0.0 (academic license).
- \Diamond The number of hyperplanes considered for the computation of LBS is set to |W|=p+1.
- \Diamond The starting stable set S (and then the starting upperbound set) is set as the empty set.
- ♦ The time limit (CPU) is set to 1800 seconds.
- \Diamond We compare with the ε -constraint method on BO instances.



Results on bi-objective max-cut instances

comparison with the $\epsilon\text{-}constraint$ method available in JuMP at https://jump.dev/JuMP.jl/stable/packages/MultiObjectiveAlgorithms

n	density%	[#NDP]	€-con	straint		МОЪВ \mathtt{Q}_{UQCI}	30	$ exttt{MObBQ}_{UQCR}$			
			solved	time(s)	solved	time(s)	#nodes	solved	time(s)	#nodes	
15	25	3	3	0.10	3	1.71	1568	3	1.15	675	
	50	8	3	0.29	3	1.55	1581	3	1.32	889	
	75	14	3	1.77	3	4.22	3909	3	2.29	1747	
	100	54	3	29.35	3	20.26	20124	3	11.11	9459	
	25	14	3	0.73	3	7.69	6389	3	4.11	2773	
20	50	15	3	1.66	3	19.38	14960	3	6.78	4605	
20	75	20	3	10.68	3	35.97	26222	3	11.01	7870	
	100	72	3	438.18	3	363.64	263236	3	105.49	68350	
	25	13	3	1.01	3	50.16	35445	3	14.25	8582	
25	50	19	3	3.83	3	63.81	40101	3	15.11	8984	
25	75	22	3	55.75	3	160.67	96333	3	34.73	20567	
	100	88	0	-	0	-	-	3	1526.79	847327	
	25	18	3	3.19	3	353.29	186759	3	51.72	26214	
30	50	26	3	16.29	3	484.07	244246	3	60.02	29255	
30	75	32	3	234.22	2	1350.45	675664	3	172.10	83560	
	100	-	0	-	0	-	-	0			

Results on tri-objective max cut instances

applying UQCR at every node works better than a one-time reformulation

n	density%	[#NDP]		МОЪВ \mathtt{Q}_{UQCI}	₹ ⁰	$ exttt{MObBQ}_{UQCR}$				
			solved	time(s)	#nodes	solved	time(s)	#nodes		
10	25	73	3	1.83	1273	3	1.23	862		
	50	103	3	2.30	1457	3	1.48	953		
	75	103	3	2.80	1629	3	2.04	1275		
	100	64	3	2.02	1499	3	1.67	1253		
	25	898	2	1623.31	37437	3	576.34	20894		
15	50	922	0	-	-	3	984.11	27176		
13	75	750	3	1494.57	42079	3	880.20	28209		
	100	323	3	264.96	33507	3	184.23	27976		
	25	-	0	-	-	0	-	-		
20	50	-	0	-	-	0	-	-		
	75	-	0	-	-	0	-	-		
	100	-	0	-	-	0	-	-		

Results on multi-objective k-item quadratic knapsack

problem formulation

$$\max_{x} \quad (f_1(x),\dots,f_p(x))^\top$$
 s.t.
$$\sum_{i=1}^n a_i x_i \leq b$$

$$\sum_{i=1}^n x_i = k$$

$$x_i \in \{0,1\} \qquad \qquad i \in \{1,\dots,n\},$$
 where
$$f_j(x) = \sum_{i=1}^n \sum_{j=1}^n (Q_j)_{i\ell} x_i x_l.$$

Results on bi-objective kQKP

We employ the single-objective instance generator described in [Ceselli et al., MPC (2022)]

n density%		#NDP	\mathtt{MObBQ}_{QCR^0}		\mathtt{MObBQ}_{UQCR}			$\mathtt{MObBQ}_{QCR+UQCR}$			${\tt MObBQ}_{UQCR^*}$			$\mathtt{MObBQ}_{QCR+UQCR^*}$			
			sol	time(s)	#nodes	sol	time(s)	#nodes	sol	time(s)	#nodes	sol	time(s)	#nodes	sol	time(s)	#nodes
20	25	46	3	15.28	12569	3	10.58	12685	3	13.85	12692	3	10.49	12684	3	10.89	12691
	50	26	3	3.55	2814	3	2.87	2943	3	3.85	2945	3	3.42	2940	3	3.37	2942
20	75	29	3	7.76	6586	3	6.11	6981	3	7.47	7049	3	6.66	6073	3	7.20	7044
	100	27	3	2.58	1874	3	2.34	1917	3	2.68	1919	3	2.54	1911	3	2.86	1911
	25	39	3	77.11	57986	3	236.50	70366	3	81.50	70375	3	69.24	70320	3	70.22	70329
25	50	36	3	7.82	5579	3	6.11	6119	3	8.90	6123	3	6.82	6118	3	7.28	6122
25	75	54	3	38.02	28010	3	30.81	28587	3	37.15	28596	3	34.17	28356	3	34.50	28365
	100	29	3	2.91	1721	3	2.57	1734	3	4.17	1734	3	2.75	1725	3	3.69	1725
	25	37	3	102.27	66127	3	79.44	72409	3	91.04	72409	3	82.60	72283	3	83.17	72283
30	50	58	2	29.84	19899	2	22.98	20033	2	29.25	20033	2	27.04	19740	2	25.34	19740
30	75	34	3	23.48	15398	3	19.22	16241	3	26.79	16640	3	21.13	15854	3	22.84	16378
	100	30	3	6.68	3484	3	6.30	3529	3	8.03	3529	3	6.69	3507	3	7.61	3507
	25	31	3	48.00	27566	3	37.07	27769	3	44.06	27769	3	39.91	27703	3	41.81	27703
35	50	71	2	88.21	52597	2	73.51	53943	2	88.14	53943	2	76.26	53800	2	77.17	53800
33	75	55	3	238.94	140667	3	194.27	152734	3	234.87	152734	3	203.16	151863	3	203.50	151863
	100	31	3	8.90	3848	3	7.88	3881	3	13.78	3881	3	10.21	3875	3	11.48	3875
	25	43	3	444.06	226818	3	331.12	235557	3	391.68	235557	3	340.79	235377	3	342.21	235377
40	50	57	3	293.61	140495	3	241.28	155633	3	271.17	157365	3	247.49	148392	3	269.34	152065
40	75	65	2	114.15	56598	2	85.61	57303	2	117.77	57306	2	92.68	57115	2	98.05	57118
	100	74	2	705.46	351445	2	602.865	393893	2	712.47	393893	2	659.09	369361	2	678.43	369361

Results on bi-objective kQKP

Comparison with the ←constraint method available in JuMP at https://jump.dev/JuMP.jl/stable/packages/MultiObjectiveAlgorithms

n	density%	ensity% [#NDP] ε-constraint		onstraint	MOF	BQ_{UQCR}
			sol	time(s)	sol	time(s)
	25	46	3	7.40	3	10.58
20	50	26	3	3.69	3	2.87
20	75	29	3	3.94	3	6.11
	100	27	3	6.26	3	2.34
	25	39	3	11.09	3	236.50
25	50	36	3	7.01	3	6.11
25	75	54	3	21.32	3	30.81
	100	29	3	6.26	3	2.57
	25	37	3	13.03	3	79.44
30	50	58	3	47.89	2	22.98
30	75	34	3	19.03	3	19.22
	100	30	3	8.26	3	6.30
	25	31	3	19.46	3	37.07
35	50	71	3	76.61	2	73.51
33	75	55	3	47.67	3	194.27
	100	31	3	12.94	3	7.88
	25	43	3	45.82	3	331.12
40	50	57	3	82.65	3	241.28
40	75	65	3	110.90	2	85.61
	100	74	3	217.96	2	602.865

• MOMINLPs are challenging (and engaging!) problems.

- MOMINLPs are challenging (and engaging!) problems.
- Single-objective branch-and-bound concepts have been extended through the enclosure, the lower bound sets and upper bound sets concepts.

- MOMINLPs are challenging (and engaging!) problems.
- Single-objective branch-and-bound concepts have been extended through the enclosure, the lower bound sets and upper bound sets concepts.
- The nondominated set can be exactly retrieved for:
 - MO integer nonlinear problems (it is a finite set);
 - BO mixed-integer linear problems (the aim is detecting the extreme nondominated points).

- MOMINLPs are challenging (and engaging!) problems.
- Single-objective branch-and-bound concepts have been extended through the enclosure, the lower bound sets and upper bound sets concepts.
- The nondominated set can be exactly retrieved for:
 - MO integer nonlinear problems (it is a finite set);
 - BO mixed-integer linear problems (the aim is detecting the extreme nondominated points).
- The quadratic convex reformulation paradigm can be extended to the multi-objective setting to define promising branch-and-bound methods.

- MOMINLPs are challenging (and engaging!) problems.
- Single-objective branch-and-bound concepts have been extended through the *enclosure*, the *lower bound sets* and *upper bound sets* concepts.
- The nondominated set can be exactly retrieved for:
 - MO integer nonlinear problems (it is a finite set);
 - BO mixed-integer linear problems (the aim is detecting the extreme nondominated points).
- The quadratic convex reformulation paradigm can be extended to the multi-objective setting to define promising branch-and-bound methods.

Thanks for your attention!