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e Computation of upper bound sets
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@ A Branch-and-Bound method for Multiobjective Binary Quadratic
Problems (MO-BQPs)

e Extending the QCR paradigm to the MO setting




Multiobjective MINLPs
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Multiobjective MINLPs

A Multiobjective Mixed Integer Nonlinear programming problem
(MOMINLP) can be formulated as follows:

min  (fi(x),..., fp(x))T

ESING
st gr(x) <0 k=1,....m (MOMINLP)

r, €7 Vi€l
where
@ figr:R" =R, j=1,...,p;k=1,....m

@ theindex set I C {1,...,n} specifies which variables have to
take integer values




MOMINLP: a powerful modeling tool!

Multiobjective mixed integer optimization problems arise in many
application fields such as

@ engineering

@ finance

@ design of water/gas distribution networks
@ location or production planning

@ emergency management

see e.g.

[Benvenuti et al. MMOR (2025)], [Pecci and Stoianov C&OR (2023)],
[Amorosi et al. EngOpt (2022)], [Liu et al. C&OR (2014)],

[Yenisey et al. Omega (2014)], [Ehrgott et al. INFOR (2009)]....




Basic definitions in multiobjective optimization

@ point z* € F is efficient for (MOMINLP) if there is no = € F with
flx) < f(z")and f(z) # f(z7)
The set of efficient points for (MOMINLP) is the efficient set
of (MOMINLP)

@ point z* = f(z*) € RP is nondominated for (MOMINLP) if
x* € Fis an efficient point for (MOMINLP)

The set of all nondominated points of (MOMINLP) is the
nondominated set of (MOMINLP)
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Challenges in solving MOMINLPs

Example: feasible set in the image space of a bi-objective minlp instance

@ the union of all F;
describes the whole
feasible set in the image
space

@ 2* is a nondominated
point and the preimage
of z* is an efficient point

@ 2’ is dominated because
2* <2 and z* # 2.

@ all the points z € F3 are
dominated




...little digression on BOMILPs!
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Bi-objective Mixed Integer Linear Programs

Example from [Fattahi and Turkay. A one direction search method to find the exact nondominated
frontier of biobjective mixed-binary linear programming problems. EJOR, 2018.]
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Solution approaches for MOMINLPs

Algorithms for multi-objective mixed-integer optimization problems
compute an approximation of the efficient or nondominated set
These approximation algorithms can be divided into two categories:
@ algorithms that compute a representation, i.e., a finite subset, of
the efficient or nondominated set
@ algorithms that compute a coverage, i.e., a superset, of the
efficient or nondominated set
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Approximating the nondominated set

In global approaches for single objective optimization the optimal
solution y* = f(«*) € R is approximated by some lower bound [ € R
and some upper bound u € R so that [ < y* < u, or, equivalently,

{v"} € ({} +Ry) N ({u} —Ry)

This idea has been generalized to the multiobjective setting as:

NC(L+RYL)N(U-RY),
where L, U C R? are nonempty sets.

[G. Eichfelder, P. Kirst, L. Meng, and O. Stein. “A general branch-and-bound
framework for continuous global multiobjective optimization”. JOGO 80(1)
(2021), 195-227]
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Definition of Enclosure

From

Definition
Let L, U C RP? be two nonempty, finite sets and N C R? a nonempty set.

Then the set

C=CLU)=L+R)NU-R) =] Jl,u

leLueU

is called (box) coverage given L and U.
If N C C,we call C C R? an enclosure of N C RP.




Example of enclosure C(L,U)

f

Figure: Enclosure C L U) CR?of N = {y* ,_y y 3,
with L = {1,121, 1*}and U = {u', u?, v, u?}.
(Thanks to Dr. Leo Warnow (TU IImenau) for the p|cture')




Branch-and-Bound methods for MOMINLPs

main ingredients

@ Computation of upper bound sets
@ Computation of lower bound sets
@ Pruning rules

@ Branching rules




MO Branch-and-Bound ingredients

Computation of upper bound sets

Let S C R? be a finite stable set of
fa i . ) .
T . images of feasible points of
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7
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MO Branch-and-Bound ingredients

Computation of upper bound sets

s N Let S C R? be a finite stable set of
QT . images of feasible points of
! (MO-BQP).

An upper bound set U/ = U(S) is

obtained computing the local

upper bounds using the algorithm

! proposed in [K. Klamroth et al.

! “On the representation of the

®------ o search region in multi-objective
optimization”. EJOR 245(3),
(2015), 767-778]

N
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e points of a stable set S

O local upper bounds defining the upper bound set i/ = U(S)




MO Branch-and-Bound ingredients

Computation of upper bound sets

[ ]
As soon as new feasible points are
. found we try to include their
_____ e . images within the stable set S to
- & improve the upper bound set ¢/

X °
®------ [
—
S

@ points of the stable set S
O local upper bounds defining the upper bound set i/ = U(5)
e images of new feasible points found




MO Branch-and-Bound ingredients

Computation of upper bound sets

sz@ @ Sis kept as a stable set
: @ the upper bound set
| U = U(S) is updated with the
5@ algorithm in [K. Klamroth et
X al. “On the representation of
e----11 the search region in
- ---- £] multi-objective optimization”.
' EJOR 245(3), (2015),

A - 767-778]
o NCU-—-RE,
7
e points of the stable set S !
O updated local upper bounds defining the upper bound set U/ = U(.S)
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MO Branch-and-Bound ingredients

Computation of lower bound sets

Given (MOMINLP), the upper image set of its continuous relaxation
is defined as

P:={f(zx)eR?|g(z) <0z cR"} +RE

We say that LB C R? is a lower bound set for (MOMINLP) if

PCLB+RY




Computation of lower bound sets

Linear supporting hyperplanes [M.Ehrgott and X. Gandibleux. “Bound sets for biobjective
combinatorial optimization problems.” C&OR 34(9) (2007), 2674-2694]

Let W C {w € RY | ||w||; = 1} be a finite set of nonnegative
vectors which includes all p unit vectors.




Computation of lower bound sets

Linear supporting hyperplanes [M.Ehrgott and X. Gandibleux. “Bound sets for biobjective
combinatorial optimization problems.” C&OR 34(9) (2007), 2674-2694]

Let W C {w € RY | ||w||; = 1} be a finite set of nonnegative
vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image set P are obtained
by solving single-objective subproblems with w €




Computation of lower bound sets

Linear supporting hyperplanes [M.Ehrgott and X. Gandibleux. “Bound sets for biobjective
combinatorial optimization problems.” C&OR 34(9) (2007), 2674-2694]

Let W C {w € RY | ||w||; = 1} be a finite set of nonnegative
vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image set P are obtained
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Computation of lower bound sets

Linear supporting hyperplanes [M.Ehrgott and X. Gandibleux. “Bound sets for biobjective
combinatorial optimization problems.” C&OR 34(9) (2007), 2674-2694]

Let W C {w € RY | ||w||; = 1} be a finite set of nonnegative
vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image set P are obtained
by solving single-objective subproblems with w €

O(w) :=min{w' f(z) | g(x) <0,z € R"}
A lower bound set can then be defined as

LB(W) := ﬂ {yeRP |w'y > 0(w)}
weW




Computation of lower bound sets
W = {(1,0), (0,1), (0.5,0.5)}
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MO Branch-and-Bound ingredients

Pruning condition: comparing &/ with LB

Vuel: u¢g LB+RE. (Cond)

Assume that S # 0. If (Cond) holds then for the nondominated set N
of (MOMINLP) we have N'N (LB +R" ) = ()




MO Branch-and-Bound ingredients

Pruning condition: comparing &/ with LB




MO Branch-and-Bound ingredients

Branching rules

% Spatial branch-and-bound methods:

intervals are partitioned for each variable

[G. Eichfelder, O. Stein, L. Warnow; “A solver for multiobjective mixed-integer
convex and nonconvex optimization”, JOTA, (2024)]

[M. De Santis, G. Eichfelder, J. Niebling, S. Rocktaschel; “Solving
multiobjective mixed integer convex optimization problems”, SIOPT, (2020)]

x Look for efficient integer assignments:

branching on integer variables

[M. De Santis, G. Eichfelder, D. Patria, L. Warnow, “Using dual relaxations in
multiobjective mixed-integer convex quadratic programming”, JOGO, (2025)]
[M. De Santis, G. Eichfelder, “A decision space algorithm for multiobjective
convex quadratic integer optimization”, C & OR, (2021)]




MObBQ: a branch-and-bound method for
multi-objective binary quadratic programs

Marianna De Santis, Lucas Létocart, Yue Zhang

UNIVERSITE

% | bratisron) RBONNE
* | FIRENZE SNORD

M. De Santis, L. Létocart, Y. Zhang. Quadratic Convex
Reformulations for Multi-Objective Binary Quadratic Programming.
Optimization Online, 2025.

% UNIVERSITA

FIRENZE 9o



Multi-objective binary quadratic programs

problem formulation

where

min

s.t.

(@1 (), - gp(2))
Ar <b (MO-BQP)

z; € {0,1} i € [n),

gj(z) = 2" Qjz+ () z, j € [p]

B
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problem formulation

min  (g1(2),.. -, qp(x))T
st. Az <b (MO-BQP)
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Multi-objective binary quadratic programs

problem formulation

min  (q(2), ..., qp(2)) "

st. Az <b (MO-BQP)
z; €{0,1} i€ [n,
where
gj(x) =" Qz + () a, j € [p]
with

@ ), € 8", j € [p] not necessarily positive semidefinite,
° JeR” jep],
° A E R’"I,X’VL, b E RTYL-
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Examples of MO-BQPs

(MO-BQP) includes multi-objective combinatorial problems such as:
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Examples of MO-BQPs

(MO-BQP) includes multi-objective combinatorial problems such as:

@ Multi-objective Max-Cut problem (MO-MCP)
Unconstrained MO-BQP

@ Multi-objective Quadratic Knapsack

in our numerical results, we consider the MultiObjective k-item
Quadratic Knapsack problem (MO-kQKP)

24



MO-bBQ scheme

Compute a starting stable set S C R? and an upper bound set &/ = U(S)

25
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Update S including f(Z) and keeping S a stable set
Update U = U(S)




MO-bBQ scheme

Compute a starting stable set S C R? and an upper bound set &/ = U(S)
Setd=0, rq =0, L:={N""}
While £ # 0 do

Choose N ¢ £, Update £ < L\ {N"4}
Compute a lower bound set LB" and evaluate Prune (N"%)
If (not Prune(N"¢)) then

If (CheckInt (N"¢)) then
Update S including f(Z) and keeping S a stable set
Update U = U(S)
Else
Setrl,, = (ra,0), ripy = (ra, 1)
Update £ < LU {NT3+1 , N”lm}
End If

End While

25



Correctness of MObBQ

Given a node N, we define the boolean function Prune (N"4) as

Prune(N"®) := (F* =0)V(Vuecl: ug LB"™).

26



Correctness of MObBQ

Given a node N"<, we define the boolean function Prune (N"<) as

Prune(N") := (F@" =0V (Vuel: ug LB"™).

If Prune (N") = 1 then no efficient point z € {0,1}" of (MO-BQP) is
such that (Z1,...,%q) = (r1,...,74)-
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Correctness of MObBQ

Given a node N"<, we define the boolean function Prune (N"<) as

Prune(N") := (F@" =0V (Vuel: ug LB"™).

If Prune (N") = 1 then no efficient point z € {0,1}" of (MO-BQP) is
such that (.fl, R ,.’fd) = (7“1, R ,Td>.

Proposition
MObBQ stops after a finite number of iterations returning the stable set
S, that is the nondominated set of (MO-BQP).




Computation of lower bound sets at the nodes

Restricted continuous relaxation

min (Ch(ﬂc)a cee Qp(x))T

s.t. 1 =T

T2 = T2
Tqg =Tq
Ax <b

meR’ll




Computation of lower bound sets at the nodes

Restricted continuous relaxation

min (Ch(ﬂc)a cee Qp(x))T

s.t. 1 =T
To =Ty min  (¢f(z),... 7qg(ac))T

= st Az <"
ra=rd x e R4
Ax <b

reR"




Quadratic Convex Reformulation’

single objective case

Consider the following single-objective binary quadratic problem

min  ¢(z)=2"Qx+c'x
st Az <b (BQP)

z; € {0,1} ie{l,...,n},

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185-1197 (2009).

28



Quadratic Convex Reformulation’

single objective case

Consider the following single-objective binary quadratic problem
min  ¢(z)=2"Qx+c'x
st Ax<b (BQP)

z; € {0,1} ie{l,...,n},

For any feasible point z € {0, 1}" it holds:
@ 1?7 =u, 1e{l,....,n}
@ (A_z —b_)? = (A—z —b_)T(A_z —b=) =0

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185-1197 (2009).




Quadratic Convex Reformulation’

single objective case

Introducing the parameters 6 ¢ R™ and /5 € R problem BQP can be
reformulated as

|

min  gsg(z) = q(z) + >, 6:(2F — x;) + B(A=z — b=)?

T

st. Az <b (QCRs,4))

2 €{0,1} ie{l,... n}

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185-1197 (2009).




Quadratic Convex Reformulation’

single objective case

Introducing the parameters ¢ « R and 3 € R problem BQP can be
reformulated as
min  gs5(2) = g(2) + 3, 0.(2F — 2:) + A=z — b=)?

st. Az<b (QCRs,5))

z; € {0,1} ie{l,...,n}.

Note that gs5,5(x) is a quadratic function depending on the matrix

Qs = Q + diag(d) + BALA_,

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185-1197 (2009).

29



Quadratic Convex Reformulation’

single objective case

Introducing the parameters ¢ ¢ R™ and 5 € R problem BQP can be
reformulated as

|

min  g55(x) = gq(x) + >, 0, (xF — @) + B(A=z — b=)?
st. Az <b (QCRs,5))

2 €{0,1} ie{l,... n}

4

Any LB on (QCR; 4)) is a valid LB on (BQP), for any (4, 3) € R™*!

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185-1197 (2009).
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Quadratic Convex Reformulation’

single objective case

@ look for the best (4, 3) € R"*!, keeping ¢s5 5 convex:

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185-1197 (2009).




Quadratic Convex Reformulation’

single objective case

@ look for the best (4, 3) € R"*!, keeping ¢s5 5 convex:

max 0(0,) = max min{gsg(z)| Az <b, z €[0,1]"},
(6,ﬁ)€Rn+l (§,ﬁ)€Rn+1 ’
Q5,520 Q5,520

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185-1197 (2009).
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Quadratic Convex Reformulation’

single objective case

@ look for the best (4, 3) € R"*!, keeping ¢s5 5 convex:

0(0",6") = max 6(,0),
((5,5)€R”+1
Q5,520

(07, p*) are obtained as the optimal dual variables of an SDP

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185-1197 (2009).

30



Quadratic Convex Reformulation’

(SDPQCR) mzin CT.’E+ZZQinij

i=1 j=1
sit. Xii =, i€ |[n] (1)
(A_AL Xy — 20l Az = b2 )

Ax <b

1 z'
=0
r X

reR" X eS8".

The optimal ¢~ and 3* are the optimal dual variables associated with
constraints (1) and (2).

1 Billionnet, Elloumi, and Plateau. "Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 11851197 (2009).

31



Ignoring the constraints

The Unconstrained Quadratic Convex Reformulation (UQCR)

Ignoring A—_x = b—, we obtain:

min  gs(x) = q@) + 5, 6.(a7 — z2)

x

st. Az <b (UQCRs)

x; € {0,1} ie{l,...,n}.




Ignoring the constraints

The Unconstrained Quadratic Convex Reformulation (UQCR)

Ignoring A—_x = b—, we obtain:

min  gs(x) = q@) + 5, 6.(a7 — z2)
xT

st. Az <b (UQCRs)

x; € {0,1} ie{l,...,n}.

The optimal §** € R™ is such that

") = 0(5) = i .
PO =g 00 = jagr ik, 6o,
Qs>=0 Qs5=0 z€[0,1]™

where Qs = Q + diag(9).




Multi-objective Quadratic Convex Reformulation

We can compute 7" € R™ and (4 ;, 35 ;) € R™"! for each objective
function and reformulate (MO-BQP) as:
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Multi-objective Quadratic Convex Reformulation

We can compute 7" € R™ and (4 ;, 35 ;) € R™"! for each objective
function and reformulate (MO-BQP) as:

min ((q1);0(2),- - (gp) s~ (2)) min ((91) (55,65 )@+ (@0) 55,85 ,) (@)
st. Az <b st. Az <b
z; € {0,1} i€ [n] z; € {0,1} i€ [n]

(MO-UQCR) (MO-QCR)
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Multi-objective Quadratic Convex Reformulation

We can compute 7" € R™ and (4 ;, 35 ;) € R™"! for each objective
function and reformulate (MO-BQP) as:

min ((a1)0+ (@), () - (&) min ((a0)s: 5 0@ @) ;o) (@)
st. Az <b st. Az <b
z; € {0,1} i€ [n] z; € {0,1} i€ [n]
(MO-UQCR) (MO-QCR)
Proposition

Let N, Nugcr and Nocr be the nondominated sets of (MO-BQP),
(MO-UQCR) and (MO-QCR), respectively.
It holds

N = Nyger = Ngcr-
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Multi-objective Quadratic Convex Reformulation

At a generic node of the branch-and-bound tree, we have a vector of
fixings 4 € {0,1}¢ and (MO-BQP)"? can be reformulated as:
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Multi-objective Quadratic Convex Reformulation

At a generic node of the branch-and-bound tree, we have a vector of
fixings 4 € {0,1}¢ and (MO-BQP)"? can be reformulated as:

min  ((g1%) 50+ (@), (gp?)50+ () min (1)) (s7,85) (@), -5 (") 52,85) (@)
st Adg <prd st Adg <pra
x € {0,1}n 4 z € {0,1}¢

(MO-UQCR"?) (MO-QCR™)
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Multi-objective Quadratic Convex Reformulation

At a generic node of the branch-and-bound tree, we have a vector of
fixings 4 € {0,1}¢ and (MO-BQP)"? can be reformulated as:

min ((q{d)q (), (ap?) 50 (@) min (61 ) 5781y (@) - (qu)o,,,g;)(ﬂﬁ))
st Adg <prd st Adg <brd
z € {0,1}n4 z € {0,1}7—¢
(MO-UQCR") (MO-QCR"%)

Each multi-objective quadratic convex reformulation comes at
the price of solving p semidefinite programs




Computation of lower bound sets

Outer approximations of the upper image sets of the relaxations of MO-QCR”? and MO-UQCR™

Let W C {w e RY | ||w||; = 1} be a finite set of nonnegative
vectors which includes all p unit vectors.




Computation of lower bound sets

Outer approximations of the upper image sets of the relaxations of MO-QCR”? and MO-UQCR™

Let W C {w e RY | ||w||; = 1} be a finite set of nonnegative
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Let W C {w e RY | ||w||; = 1} be a finite set of nonnegative
vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image sets at the node are
obtained by solving single-objective subproblems with w € W:

0" (w) = min{wT(q”)((;*ﬁ*)(x) | Ade < bz € [0,1]"%}

074 (w) := min{w ' (¢") s (z) | Az < b,z € [0,1]"" %}

Note each subproblem is a continuous convex quadratic program
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Computation of lower bound sets

Outer approximations of the upper image sets of the relaxations of MO-QCR”? and MO-UQCR™

Once the |W| continuous single-objective convex quadratic
subproblems are solved, the lower bound sets are then defined as:

LBYeprs(W) = [y € R |w y > 07 (w)}
weWw

LBfgopa(W) = [ {y €R? [w Ty > 074 (w)}
weW

The computation of a lower bound set at a node comes at the price of
solving p semidefinite programs and |17/| single-objective convex
quadratic programs
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Lower bound sets as linear outer approximations

W = {(1,0), (0,1), (0.5,0.5)}

fT
LB gra (W)

R
f1

Fra ={z € [0,1]"% | A%z < b} is the restricted feasible set at N
&




Relaxations at the nodes

Comparing the lower bound sets

LB pra (W) € LB g (W)
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LBy pra (W) € LB o(W) and LB

UQCRO gerra(W) S LBgepo(W)

QCRO




Relaxations at the nodes

Comparing the lower bound sets

LB pra (W) € LB g (W)

LBd

torra(W) C LBy oo(W) and LB pry (W) C LBYL o (W)

UQCRO QCRO
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Advantage of static branching

Avoiding to solve p SDPs at each node

In our implementation of MObBQ, the order in which binary variables
are fixed is predetermined

at a generic level d € [n] U {0} of the search tree, the variables
T1,...,1q are fixed.

The subproblems at the nodes belonging to the same level d € [n]
share the same matrices Q;i j € [p




U, *

Computation of 4,

, J € [p] in pre-processing

p x n. SDPs to be solved in total

For eachlevel d =0,...,n —1 and each j € [p] we address:

(SDPUQCR)? min

s.t.

n—dn—d

Z Z(Q?)M Xil

i=1 (=1

X = x;, ze[n—d]

T
1 =« “ 0
r X

o= Rnfd’ X e Snfd
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U, *

Computation of 6;”, j € [p] in pre-processing

p x n. SDPs to be solved in total

For eachlevel d =0,...,n —1 and each j € [p] we address:

n—dn—d
(SDPyqcr)] min >N (@Die Xu
i=1 (=1
s.t. Xy=x;, 1€ [n — d]

T
1 =z “ 0
r X
iL'GRnid, XGSnfd

N.B. the linear term of the objective functions cannot be considered
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Improved 6.

How to take into account Az < b

If A and b have nonnegative entries

{zef0,1]" | Ae =bra} C{x e [0,1]"¢ | Az < b_}.
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Improved 6.

How to take into account Az < b

If A and b have nonnegative entries

{zef0,1]" | Ae =bra} C{x e [0,1]"¢ | Az < b_}.

(SDPUQCR* )Jd min

s.t.

n—dn—d

DD (@) Xy

=1 =1

X“:;Ll, LE[TL*d]
Az <

-
1 =z =0
z X

n—d —d
reR"™ X S
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Numerical results

We compared five different versions of MObBQ algorithms:

O MObBQuocr: (MO-UQCR)™ is adopted at every node
{ MObBQugcr-~: the improved UQCR is adopted at every node

O MObBQocr+vgcr: (MO-QCR) is adopted at the root node and
(MO-UQCR)"? is adopted at every other node

O MObBQocr+vqcr-: (MO-QCR) is adopted at the root node and
the improved UQCR is adopted at every other node

{ MObBQgcro (OF MObBQygero): (MO-QCR) (or (MO-UQCR)) is
adopted to reformulate (MO-QCR)
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Implementation details

¢ All versions of MO-bBQ are implemented in JULIA v.1.11.2.
The implementation is available at
https://github.com/Yue0925/MultiObjectiveAlgorithms. jl
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Implementation details

¢ All versions of MO-bBQ are implemented in JULIA v.1.11.2.
The implementation is available at
https://github.com/Yue0925/MultilbjectiveAlgorithms. j1
...hopefully soon part of:

[0 README &3 License =

A

A
MultiObjectiveAlgorithms.jl

MultiObjectiveAlgorithms. | (MOA) is a collection of algorithms for multi-objective optimization.

License

MultiObjectiveAlgorithms.jl is licensed under the MPL 2.0 License.

25 | osem
B
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Implementation details

¢ All versions of MO-bBQ are implemented in JULIA v.1.11.2.
The implementation is available at
https://github.com/Yue0925/MultiObjectiveAlgorithms. jl

O We invoke CSDP.JL solver v.6.2.0 and GUROBI.JL solver v12.0.0
(academic license).

¢ The number of hyperplanes considered for the computation of
LBSissetto |IW|=p+ 1.

¢ The starting stable set S (and then the starting upperbound set)
is set as the empty set.

¢ The time limit (CPU) is set to 1800 seconds.

¢ We compare with the e-constraint method on BO instances.
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Results on bi-objective max-cut instances

comparison with the e-constraint method available in JuMP at
https://jump.dev/JuMP. jl/stable/packages/MultiObjectiveAlgorithms

n density% |#NDP| e-constraint MObBQy ¢ o MObBQucr

solved time(s) solved time(s) #nodes solved time(s) #nodes

25 3 3 0.10 3 1.71 1568 3 1.15 675

15 50 8 3 0.29 3 1.55 1581 3 1.32 889
75 14 3 1.77 3 4.22 3909 3 2.29 1747

100 54 3 29.35 3 20.26 20124 3 11.11 9459

25 14 3 0.73 3 7.69 6389 3 4.1 2773

20 50 15 3 1.66 3 19.38 14960 3 6.78 4605
75 20 3 10.68 3 35.97 26222 3 11.01 7870

100 72 3 438.18 3 363.64 263236 3 105.49 68350

25 13 3 1.01 3 50.16 35445 3 14.25 8582

o5 50 19 3 3.83 3 63.81 40101 3 15.11 8984
75 22 3 55.75 3 160.67 96333 3 34.73 20567

100 88 0 - 0 - - 3 1526.79 847327

25 18 3 3.19 3 35329 186759 3 51.72 26214

30 50 26 3 16.29 3 484.07 244246 3 60.02 29255
75 32 3 23422 2 1350.45 675664 3 17210 83560

100 - 0 - 0 - - 0 - -
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Results on tri-objective max cut instances

applying UQCR at every node works better than a one-time reformulation

n density% L#NDPJ MObBQy e Rro MObBQugcr

solved time(s) #nodes solved time(s) #nodes

25 73 3 1.83 1273 3 1.23 862

10 50 103 3 2.30 1457 3 1.48 953
75 103 3 2.80 1629 3 2.04 1275

100 64 3 2.02 1499 3 1.67 1253

25 898 2 1623.31 37437 3 576.34 20894

15 50 922 0 - - 3 984.11 27176
75 750 3 149457 42079 3 880.20 28209

100 323 3  264.96 33507 3 184.23 27976

25 0 - 0 -

20 50 0 - 0 -
75 0 - 0 -

100 0 - 0 -




Results on multi-objective k-item quadratic knapsack

problem formulation

(MO-kQKP)

t 4



Results on bi-objective kKQKP

We employ the single-objective instance generator described in [Ceselli et al., MPC (2022)]

n  density% |#NDP MObBQgC R MObBQu Qc R MObBQQC R+UQCR MObBQu QC R+ MObBAQCR+UQCR"

sol time(s) #nodes sol time(s) #nodes sol time(s) #nodes sol time(s) #nodes sol time(s) #nodes

25 46 3 1528 12569 3 1058 12685 3 13.85 12692 3 1049 12684 3 10.89 12691
2 50 26 3 3.55 2814 3 2.87 2943 3 3.85 2945 3 3.42 2940 3 3.37 2942
75 29 3 7.76 6586 3 6.11 6981 3 7.47 7049 3 6.66 6073 3 7.20 7044
100 27 3 2.58 1874 3 234 1917 3 2.68 1919 3 2.54 1911 3 2.86 1911
25 39 3 77.11 57986 3 236.50 70366 3 81.50 70375 3 69.24 70320 3 7022 70329
25 50 36 3 7.82 5579 3 6.11 6119 3 8.90 6123 3 6.82 6118 3 7.28 6122
75 54 3 38.02 28010 3 30.81 28587 3 37.15 28596 3 3417 28356 3 3450 28365
100 29 3 2.91 1721 3 257 1734 3 417 1734 3 2.75 1725 3 3.69 1725
25 37 3 10227 66127 3 79.44 72409 3 91.04 72409 3 8260 72283 3 83.17 72283
30 50 58 2 29.84 19899 2 2298 20033 2 29.25 20033 2 27.04 19740 2 2534 19740
75 34 3 2348 15398 3 19.22 16241 3 26.79 16640 3 21.13 15854 3 22.84 16378
100 30 3 6.68 3484 3 6.30 3529 3 8.03 3529 3 6.69 3507 3 7.61 3507
25 31 3 48.00 27566 3 37.07 27769 3 44.06 27769 3 39.91 27703 3 41.81 27703
35 50 7 2 88.21 52597 2 73.51 53943 2 88.14 53943 2 76.26 53800 2 7717 53800
75 55 3 238.94 140667 3 194.27 152734 3 23487 152734 3 203.16 151863 3 20350 151863
100 31 3 8.90 3848 3 7.88 3881 3 13.78 3881 3 10.21 3875 3 11.48 3875
25 43 3 44406 226818 3 331.12 235557 3 391.68 235557 3  340.79 235377 3 34221 235377
40 50 57 3 29361 140495 3 24128 155633 3 27117 157365 3  247.49 148392 3  269.34 152065
75 65 2 11415 56598 2 85.61 57303 2 117.77 57306 2 9268 57115 2 98.05 57118
100 74 2 70546 351445 2 602.865 393893 2 71247 393893 2 659.09 369361 2 67843 369361
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Results on bi-objective kKQKP

Comparison with the e-constraint method available in JuMP at
https://jump.dev/JuMP. jl/stable/packages/MultiObjectiveAlgorithms

n density% |#NDP| e-constraint MObBQu R

sol time(s) sol time(s)

25 46 3 740 3 10.58
20 50 26 3 369 38 2.87
75 29 3 394 3 6.11
100 27 3 6.26 3 2.34
25 39 3 11.09 3 236.50
25 50 36 3 701 3 6.11
75 54 3 2132 3 30.81
100 29 3 6.26 3 2.57
25 37 3 13.03 3 79.44
30 50 58 3 4789 2 22.98
75 34 3 19.03 3 19.22
100 30 3 826 3 6.30
25 31 3 1946 3 37.07
35 50 71 3 76.61 2 73.51
75 55 3 4767 3 194.27
100 31 3 1294 3 7.88
25 43 3 4582 3 331.12
40 50 57 3 8265 3 241.28
75 65 3 11090 2 85.61
100 74 3 21796 2 602865
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@ MOMINLPs are challenging (and engaging!) problems.

@ Single-objective branch-and-bound concepts have been
extended through the enclosure, the lower bound sets and upper
bound sets concepts.

@ The nondominated set can be exactly retrieved for:

e MO integer nonlinear problems (it is a finite set);
e BO mixed-integer linear problems (the aim is detecting the extreme
nondominated points).

@ The quadratic convex reformulation paradigm can be extended to
the multi-objective setting to define promising branch-and-bound
methods.

Thanks for your attention!




