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Multiobjective MINLPs

A Multiobjective Mixed Integer Nonlinear programming problem
(MOMINLP) can be formulated as follows:

min
x∈Rn

(f1(x), . . . , fp(x))
T

s.t. gk(x) ≤ 0 k = 1, . . . ,m

xi ∈ Z ∀i ∈ I,

(MOMINLP)

where

fj , gk : Rn → R; j = 1, . . . , p; k = 1, . . . ,m

the index set I ⊆ {1, . . . , n} specifies which variables have to
take integer values
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MOMINLP: a powerful modeling tool!

Multiobjective mixed integer optimization problems arise in many
application fields such as

engineering

finance

design of water/gas distribution networks

location or production planning

emergency management

see e.g.
[Benvenuti et al. MMOR (2025)], [Pecci and Stoianov C&OR (2023)],
[Amorosi et al. EngOpt (2022)], [Liu et al. C&OR (2014)],
[Yenisey et al. Omega (2014)], [Ehrgott et al. INFOR (2009)],...

4



Basic definitions in multiobjective optimization

point x∗ ∈ F is efficient for (MOMINLP) if there is no x ∈ F with
f(x) ≤ f(x∗) and f(x) ̸= f(x∗)

The set of efficient points for (MOMINLP) is the efficient set
of (MOMINLP)

point z∗ = f(x∗) ∈ Rp is nondominated for (MOMINLP) if
x∗ ∈ F is an efficient point for (MOMINLP)

The set of all nondominated points of (MOMINLP) is the
nondominated set of (MOMINLP)
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Challenges in solving MOMINLPs
Example: feasible set in the image space of a bi-objective minlp instance

z∗ − R2
+

z∗

F1

F2

F3

F4

z′ − R2
+

z′

f1

f2
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...little digression on BOMILPs!
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Bi-objective Mixed Integer Linear Programs
Example from [Fattahi and Turkay. A one direction search method to find the exact nondominated
frontier of biobjective mixed-binary linear programming problems. EJOR, 2018.]

8



Bi-objective Mixed Integer Linear Programs
Example from [Fattahi and Turkay. A one direction search method to find the exact nondominated
frontier of biobjective mixed-binary linear programming problems. EJOR, 2018.]

8



Solution approaches for MOMINLPs

Algorithms for multi-objective mixed-integer optimization problems
compute an approximation of the efficient or nondominated set

These approximation algorithms can be divided into two categories:

algorithms that compute a representation, i.e., a finite subset, of
the efficient or nondominated set

algorithms that compute a coverage, i.e., a superset, of the
efficient or nondominated set
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Approximating the nondominated set

In global approaches for single objective optimization the optimal
solution y∗ = f(x∗) ∈ R is approximated by some lower bound l ∈ R
and some upper bound u ∈ R so that l ≤ y∗ ≤ u,

or, equivalently,

{y∗} ⊆ ({l}+ R+) ∩ ({u} − R+)

This idea has been generalized to the multiobjective setting as:

N ⊆ (L+ Rp
+) ∩ (U − Rp

+),

where L,U ⊆ Rp are nonempty sets.

[G. Eichfelder, P. Kirst, L. Meng, and O. Stein. “A general branch-and-bound
framework for continuous global multiobjective optimization”. JOGO 80(1)
(2021), 195-227]
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Definition of Enclosure

From [G. Eichfelder and L. Warnow. “An approximation algorithm for
multi-objective optimization problems using a box-coverage”. JOGO 83(2)
(2021), 329-357]:

Definition
Let L,U ⊆ Rp be two nonempty, finite sets and N ⊆ Rp a nonempty set.

Then the set

C = C(L,U) := (L+ Rp
+) ∩ (U − Rp

+) =
⋃
l∈L

⋃
u∈U

[l, u]

is called (box) coverage given L and U .

If N ⊆ C, we call C ⊆ Rp an enclosure of N ⊆ Rp.

11



Definition of Enclosure

From [G. Eichfelder and L. Warnow. “An approximation algorithm for
multi-objective optimization problems using a box-coverage”. JOGO 83(2)
(2021), 329-357]:

Definition
Let L,U ⊆ Rp be two nonempty, finite sets and N ⊆ Rp a nonempty set.
Then the set

C = C(L,U) := (L+ Rp
+) ∩ (U − Rp

+) =
⋃
l∈L

⋃
u∈U

[l, u]

is called (box) coverage given L and U .

If N ⊆ C, we call C ⊆ Rp an enclosure of N ⊆ Rp.

11



Definition of Enclosure

From [G. Eichfelder and L. Warnow. “An approximation algorithm for
multi-objective optimization problems using a box-coverage”. JOGO 83(2)
(2021), 329-357]:

Definition
Let L,U ⊆ Rp be two nonempty, finite sets and N ⊆ Rp a nonempty set.
Then the set

C = C(L,U) := (L+ Rp
+) ∩ (U − Rp

+) =
⋃
l∈L

⋃
u∈U

[l, u]

is called (box) coverage given L and U .

If N ⊆ C, we call C ⊆ Rp an enclosure of N ⊆ Rp.

11



Example of enclosure C(L,U)

f1

f2

z

Z

y1

y2

y3

l1

l2

l3

l4

u1

u2

u3

u4

C(L,U)

N
f(S)

Figure: Enclosure C(L,U) ⊆ R2 of N = {y1, y2, y3},
with L = {l1, l2, l3, l4} and U = {u1, u2, u3, u4}.

(Thanks to Dr. Leo Warnow (TU Ilmenau) for the picture!)
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Branch-and-Bound methods for MOMINLPs
main ingredients

Computation of upper bound sets

Computation of lower bound sets

Pruning rules

Branching rules
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MO Branch-and-Bound ingredients
Computation of upper bound sets

f1

f2 □

□

□

□

points of a stable set S

□ local upper bounds defining the upper bound set U = U(S)

Let S ⊂ Rp be a finite stable set of
images of feasible points of
(MO-BQP).

An upper bound set U = U(S) is
obtained computing the local
upper bounds using the algorithm
proposed in [K. Klamroth et al.
“On the representation of the
search region in multi-objective
optimization”. EJOR 245(3),
(2015), 767-778]
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MO Branch-and-Bound ingredients
Computation of upper bound sets

f1

f2 □

□

□

□

points of the stable set S

□ local upper bounds defining the upper bound set U = U(S)

images of new feasible points found

As soon as new feasible points are
found we try to include their
images within the stable set S to
improve the upper bound set U
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MO Branch-and-Bound ingredients
Computation of upper bound sets

f1

f2 □

□

□
□

□

□

□

points of the stable set S

updated local upper bounds defining the upper bound set U = U(S)

S is kept as a stable set

the upper bound set
U = U(S) is updated with the
algorithm in [K. Klamroth et
al. “On the representation of
the search region in
multi-objective optimization”.
EJOR 245(3), (2015),
767-778]

N ⊆ U − Rp
+,

15



MO Branch-and-Bound ingredients
Computation of lower bound sets

Given (MOMINLP), the upper image set of its continuous relaxation
is defined as

P := {f(x) ∈ Rp | g(x) ≤ 0 x ∈ Rn}+ Rp
+

We say that LB ⊆ Rp is a lower bound set for (MOMINLP) if

P ⊆ LB + Rp
+

16
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Computation of lower bound sets
Linear supporting hyperplanes [M.Ehrgott and X. Gandibleux. “Bound sets for biobjective
combinatorial optimization problems.” C&OR 34(9) (2007), 2674-2694]

Let W ⊆ {w ∈ Rp
+ | ||w||1 = 1} be a finite set of nonnegative

vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image set P are obtained
by solving single-objective subproblems with w ∈ W :

θ(w) := min{w⊤f(x) | g(x) ≤ 0, x ∈ Rn}

A lower bound set can then be defined as

LB(W ) :=
⋂

w∈W

{y ∈ Rp | w⊤y ≥ θ(w)}
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Computation of lower bound sets
W = {(1, 0), (0, 1), (0.5, 0.5)}

f1

f2

f(S)

LB(W )

S = {x ∈ Rn | g(x) ≤ 0}
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MO Branch-and-Bound ingredients
Pruning condition: comparing U with LB

∀ u ∈ U : u ̸∈ LB + Rp
+. (Cond)

Lemma

Assume that S ̸= ∅. If (Cond) holds then for the nondominated set N
of (MOMINLP) we have N ∩ (LB + Rp

+) = ∅

19
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MO Branch-and-Bound ingredients
Pruning condition: comparing U with LB

S ̸= ∅

f1

f2

f(S)

• u3

• u1

• u2

U

LB(W )
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MO Branch-and-Bound ingredients
Branching rules

¸ Spatial branch-and-bound methods:
intervals are partitioned for each variable

[G. Eichfelder, O. Stein, L. Warnow; “A solver for multiobjective mixed-integer
convex and nonconvex optimization”, JOTA, (2024)]

[M. De Santis, G. Eichfelder, J. Niebling, S. Rocktäschel; “Solving
multiobjective mixed integer convex optimization problems”, SIOPT, (2020)]

¸ Look for efficient integer assignments:
branching on integer variables

[M. De Santis, G. Eichfelder, D. Patria, L. Warnow, “Using dual relaxations in
multiobjective mixed-integer convex quadratic programming”, JOGO, (2025)]

[M. De Santis, G. Eichfelder, “A decision space algorithm for multiobjective
convex quadratic integer optimization”, C & OR, (2021)]

...
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MObBQ: a branch-and-bound method for
multi-objective binary quadratic programs

Marianna De Santis, Lucas Létocart, Yue Zhang

M. De Santis, L. Létocart, Y. Zhang. Quadratic Convex
Reformulations for Multi-Objective Binary Quadratic Programming.
Optimization Online, 2025.
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Multi-objective binary quadratic programs
problem formulation

min
x

(q1(x), . . . , qp(x))
⊤

s.t. Ax ≤ b

xi ∈ {0, 1} i ∈ [n],

(MO-BQP)

where
qj(x) = x⊤Qjx+ (cj)⊤x, j ∈ [p]

with

Qj ∈ Sn, j ∈ [p] not necessarily positive semidefinite,

cj ∈ Rn, j ∈ [p],

A ∈ Rm×n, b ∈ Rm.
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Examples of MO-BQPs

(MO-BQP) includes multi-objective combinatorial problems such as:

Multi-objective Max-Cut problem (MO-MCP)
Unconstrained MO-BQP

Multi-objective Quadratic Knapsack
in our numerical results, we consider the MultiObjective k-item
Quadratic Knapsack problem (MO-kQKP)
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MO-bBQ scheme

Compute a starting stable set S ⊂ Rp and an upper bound set U = U(S)

Set d = 0, rd = ∅, L := {Nrd}
While L ≠ ∅ do

Choose Nrd ∈ L, Update L ← L \ {Nrd}

Compute a lower bound set LBrd and evaluate Prune(Nrd)

If (not Prune(Nrd)) then

If (CheckInt(Nrd)) then
Update S including f(x̄) and keeping S a stable set
Update U = U(S)

Else
Set r0d+1 = (rd, 0), r1d+1 = (rd, 1)

Update L ← L ∪ {Nr0d+1 , Nr1d+1}

End If

End While
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Choose Nrd ∈ L, Update L ← L \ {Nrd}

Compute a lower bound set LBrd and evaluate Prune(Nrd)

If (not Prune(Nrd)) then

If (CheckInt(Nrd)) then
Update S including f(x̄) and keeping S a stable set
Update U = U(S)

Else
Set r0d+1 = (rd, 0), r1d+1 = (rd, 1)

Update L ← L ∪ {Nr0d+1 , Nr1d+1}

End If

End While

25



MO-bBQ scheme

Compute a starting stable set S ⊂ Rp and an upper bound set U = U(S)

Set d = 0, rd = ∅, L := {Nrd}
While L ≠ ∅ do
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Correctness of MObBQ

Given a node Nrd , we define the boolean function Prune(Nrd) as

Prune(Nrd) := (Frd = ∅) ∨ (∀ u ∈ U : u ̸∈ LBrd).

Proposition

If Prune(Nrd) = 1 then no efficient point x̄ ∈ {0, 1}n of (MO-BQP) is
such that (x̄1, . . . , x̄d) = (r1, . . . , rd).

Proposition
MObBQ stops after a finite number of iterations returning the stable set
S, that is the nondominated set of (MO-BQP).
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Computation of lower bound sets at the nodes
Restricted continuous relaxation

min (q1(x), . . . , qp(x))
T

s.t. x1 = r1

x2 = r2
...

xd = rd

Ax ≤ b

x ∈ Rn

=

min (qr1(x), . . . , q
r
p(x))

T

s.t. Adx ≤ br

x ∈ Rn−d
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Quadratic Convex Reformulation1

single objective case

Consider the following single-objective binary quadratic problem

min
x

q(x) = x⊤Qx+ c⊤x

s.t. Ax ≤ b

xi ∈ {0, 1} i ∈ {1, . . . , n},

(BQP)

For any feasible point x ∈ {0, 1}n it holds:

x2
i = xi, i ∈ {1, . . . , n}

(A=x− b=)
2 = (A=x− b=)

T (A=x− b=) = 0

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185–1197 (2009).
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Quadratic Convex Reformulation1

single objective case

Introducing the parameters δ ∈ Rn and β ∈ R problem BQP can be
reformulated as

min
x

qδ,β(x) = q(x) +
∑n

i=1 δi(x
2
i − xi) + β(A=x− b=)

2

s.t. Ax ≤ b

xi ∈ {0, 1} i ∈ {1, . . . , n}.

(QCR(δ,β))

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185–1197 (2009).
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2
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2

s.t. Ax ≤ b

xi ∈ {0, 1} i ∈ {1, . . . , n}.

(QCR(δ,β))

Note that qδ,β(x) is a quadratic function depending on the matrix

Qδ,β = Q+ diag(δ) + βA⊤
=A=,

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185–1197 (2009).
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2

s.t. Ax ≤ b
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(QCR(δ,β))

⇓
Any LB on (QCR(δ,β)) is a valid LB on (BQP), for any (δ, β) ∈ Rn+1

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185–1197 (2009).
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Quadratic Convex Reformulation1

single objective case

look for the best (δ, β) ∈ Rn+1, keeping qδ,β convex:

max
(δ,β)∈Rn+1

Qδ,β⪰0

θ(δ, β),

(δ∗, β∗) are obtained as the optimal dual variables of an SDP

1 Billionnet, Elloumi, and Plateau. “Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185–1197 (2009).
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Quadratic Convex Reformulation1

(SDPQCR) min
x

c⊤x+
n∑

i=1

n∑
j=1

QijXij

s.t. Xii = xi, i ∈ [n] (1)

⟨A=A
⊤
=, X⟩ − 2b⊤=A=x = −b2= (2)

Ax ≤ b(
1 x⊤

x X

)
⪰ 0

x ∈ Rn, X ∈ Sn.

The optimal δ∗ and β∗ are the optimal dual variables associated with
constraints (1) and (2).

1 Billionnet, Elloumi, and Plateau. ”Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method.” Discret.
Appl. Math. 157, 1185–1197 (2009).
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Ignoring the constraints
The Unconstrained Quadratic Convex Reformulation (UQCR)

Ignoring A=x = b=, we obtain:

min
x

qδ(x) = q(x) +
∑n

i=1 δi(x
2
i − xi)

s.t. Ax ≤ b

xi ∈ {0, 1} i ∈ {1, . . . , n}.

(UQCRδ)

The optimal δu,∗ ∈ Rn is such that

θ(δu,∗) = max
δ∈Rn

Qδ⪰0

θ(δ) = max
δ∈Rn

Qδ⪰0

min
Ax≤b

x∈[0,1]n

qδ(x),

where Qδ = Q+ diag(δ).

θ(δu,∗) ≤ θ(δ∗, β∗)
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Multi-objective Quadratic Convex Reformulation

We can compute δu,∗0,j ∈ Rn and (δ∗0,j , β
∗
0,j) ∈ Rn+1 for each objective

function and reformulate (MO-BQP) as:

min
x

((q1)δu,∗
0,1

(x), . . . , (qp)δu,∗
0,p

(x))

s.t. Ax ≤ b

xi ∈ {0, 1} i ∈ [n]

(MO-UQCR)

min
x

((q1)(δ∗0,1,β
∗
0,1)

(x), . . . , (qp)(δ∗0,p,β
∗
0,p)

(x))

s.t. Ax ≤ b

xi ∈ {0, 1} i ∈ [n]

(MO-QCR)

Proposition
Let N , NUQCR and NQCR be the nondominated sets of (MO-BQP),
(MO-UQCR) and (MO-QCR), respectively.
It holds

N = NUQCR = NQCR.
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Multi-objective Quadratic Convex Reformulation

At a generic node of the branch-and-bound tree, we have a vector of
fixings rd ∈ {0, 1}d and (MO-BQP)rd can be reformulated as:

min
x

((q
rd
1 )δu,∗

1
(x), . . . , (q

rd
p )δu,∗

p
(x))

s.t. Adx ≤ brd

x ∈ {0, 1}n−d

(MO-UQCRrd)

min
x

((q
rd
1 )(δ∗1 ,β∗

1 )(x), . . . , (q
rd
p )(δ∗p ,β∗

p)(x))

s.t. Adx ≤ brd

x ∈ {0, 1}n−d

(MO-QCRrd)

Each multi-objective quadratic convex reformulation comes at
the price of solving p semidefinite programs
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Computation of lower bound sets
Outer approximations of the upper image sets of the relaxations of MO-QCRrd and MO-UQCRrd

Let W ⊆ {w ∈ Rp
+ | ||w||1 = 1} be a finite set of nonnegative

vectors which includes all p unit vectors.

The supporting hyperplanes of the upper image sets at the node are
obtained by solving single-objective subproblems with w ∈ W :

θrd(w) := min{w⊤(qrd)(δ∗,β∗)(x) | Adx ≤ brd , x ∈ [0, 1]n−d}

θrdu (w) := min{w⊤(qrd)δu,∗(x) | Adx ≤ brd , x ∈ [0, 1]n−d}

Note each subproblem is a continuous convex quadratic program
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Computation of lower bound sets
Outer approximations of the upper image sets of the relaxations of MO-QCRrd and MO-UQCRrd

Once the |W | continuous single-objective convex quadratic
subproblems are solved, the lower bound sets are then defined as:

LBrd
QCRrd (W ) :=

⋂
w∈W

{y ∈ Rp | w⊤y ≥ θrd(w)}

LBrd
UQCRrd (W ) :=

⋂
w∈W

{y ∈ Rp | w⊤y ≥ θrdu (w)}

The computation of a lower bound set at a node comes at the price of
solving p semidefinite programs and |W | single-objective convex
quadratic programs
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Lower bound sets as linear outer approximations
W = {(1, 0), (0, 1), (0.5, 0.5)}

f1

f2

qrd(δ∗,β∗)(Frd)

LBrd
QCRrd (W )

Frd = {x ∈ [0, 1]n−d | Adx ≤ brd} is the restricted feasible set at Nrd

37



Relaxations at the nodes
Comparing the lower bound sets

Proposition

LB
rd
QCRrd (W ) ⊆ LB

rd
UQCRrd (W )

LB
rd
UQCRrd (W ) ⊆ LB

rd
UQCR0(W ) and LB

rd
QCRrd (W ) ⊆ LB

rd
QCR0(W )

−4,000 −3,000 −2,000 −1,000 0
−4,000

−3,000

−2,000

−1,000

0

f1

f 2

LBUQCR

LBQCR

LBUQCR∗

NDP
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Advantage of static branching
Avoiding to solve p SDPs at each node

In our implementation of MObBQ, the order in which binary variables
are fixed is predetermined

⇓
at a generic level d ∈ [n] ∪ {0} of the search tree, the variables
x1, . . . , xd are fixed.

⇓
The subproblems at the nodes belonging to the same level d ∈ [n]

share the same matrices Qd
j , j ∈ [p].
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Computation of δu,∗j , j ∈ [p] in pre-processing
p× n SDPs to be solved in total

For each level d = 0, . . . , n− 1 and each j ∈ [p] we address:

(SDPUQCR)
d
j min

x

n−d∑
i=1

n−d∑
ℓ=1

(Qd
j )iℓ Xil

s.t. Xii = xi, i ∈ [n− d](
1 x⊤

x X

)
⪰ 0

x ∈ Rn−d, X ∈ Sn−d

N.B. the linear term of the objective functions cannot be considered
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Improved δu,∗j
How to take into account Ax ≤ b

If A and b have nonnegative entries

{x ∈ [0, 1]n−d | Ad
=x = brd= } ⊆ {x ∈ [0, 1]n−d | Ad

=x ≤ b=}.

(SDPUQCR∗)dj min
x

n−d∑
i=1

n−d∑
ℓ=1

(Qj)
d
iℓ Xij

s.t. Xii = xi, i ∈ [n− d]

Adx ≤ b(
1 x⊤

x X

)
⪰ 0

x ∈ Rn−d, X ∈ Sn−d.
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Numerical results

We compared five different versions of MObBQ algorithms:

♢ MObBQUQCR: (MO-UQCR)rd is adopted at every node

♢ MObBQUQCR∗ : the improved UQCR is adopted at every node

♢ MObBQQCR+UQCR: (MO-QCR) is adopted at the root node and
(MO-UQCR)rd is adopted at every other node

♢ MObBQQCR+UQCR∗ : (MO-QCR) is adopted at the root node and
the improved UQCR is adopted at every other node

♢ MObBQQCR0 (or MObBQUQCR0): (MO-QCR) (or (MO-UQCR)) is
adopted to reformulate (MO-QCR)
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Implementation details

♢ All versions of MO-bBQ are implemented in JULIA v.1.11.2.
The implementation is available at
https://github.com/Yue0925/MultiObjectiveAlgorithms.jl

♢ We invoke CSDP.JL solver v.6.2.0 and GUROBI.JL solver v12.0.0
(academic license).

♢ The number of hyperplanes considered for the computation of
LBS is set to |W | = p+ 1.

♢ The starting stable set S (and then the starting upperbound set)
is set as the empty set.

♢ The time limit (CPU) is set to 1800 seconds.

♢ We compare with the ε-constraint method on BO instances.
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Results on bi-objective max-cut instances
comparison with the ϵ-constraint method available in JuMP at
https://jump.dev/JuMP.jl/stable/packages/MultiObjectiveAlgorithms

n density% ⌊#NDP⌋ ϵ-constraint MObBQUQCR0 MObBQUQCR

solved time(s) solved time(s) #nodes solved time(s) #nodes

15

25 3 3 0.10 3 1.71 1568 3 1.15 675

50 8 3 0.29 3 1.55 1581 3 1.32 889

75 14 3 1.77 3 4.22 3909 3 2.29 1747

100 54 3 29.35 3 20.26 20124 3 11.11 9459

20

25 14 3 0.73 3 7.69 6389 3 4.11 2773

50 15 3 1.66 3 19.38 14960 3 6.78 4605

75 20 3 10.68 3 35.97 26222 3 11.01 7870

100 72 3 438.18 3 363.64 263236 3 105.49 68350

25

25 13 3 1.01 3 50.16 35445 3 14.25 8582

50 19 3 3.83 3 63.81 40101 3 15.11 8984

75 22 3 55.75 3 160.67 96333 3 34.73 20567

100 88 0 - 0 - - 3 1526.79 847327

30

25 18 3 3.19 3 353.29 186759 3 51.72 26214

50 26 3 16.29 3 484.07 244246 3 60.02 29255

75 32 3 234.22 2 1350.45 675664 3 172.10 83560

100 - 0 - 0 - - 0 - -
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Results on tri-objective max cut instances
applying UQCR at every node works better than a one-time reformulation

n density% ⌊#NDP⌋ MObBQUQCR0 MObBQUQCR

solved time(s) #nodes solved time(s) #nodes

10

25 73 3 1.83 1273 3 1.23 862

50 103 3 2.30 1457 3 1.48 953

75 103 3 2.80 1629 3 2.04 1275

100 64 3 2.02 1499 3 1.67 1253

15

25 898 2 1623.31 37437 3 576.34 20894

50 922 0 - - 3 984.11 27176

75 750 3 1494.57 42079 3 880.20 28209

100 323 3 264.96 33507 3 184.23 27976

20

25 - 0 - - 0 - -

50 - 0 - - 0 - -

75 - 0 - - 0 - -

100 - 0 - - 0 - -
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Results on multi-objective k-item quadratic knapsack
problem formulation

max
x

(f1(x), . . . , fp(x))
⊤

s.t.
n∑

i=1

aixi ≤ b

n∑
i=1

xi = k

xi ∈ {0, 1} i ∈ {1, . . . , n},

(MO-kQKP)

where fj(x) =

n∑
i=1

n∑
ℓ=1

(Qj)iℓxixl.
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Results on bi-objective kQKP
We employ the single-objective instance generator described in [Ceselli et al., MPC (2022)]

n density% ⌊#NDP⌋ MObBQQCR0 MObBQUQCR MObBQQCR+UQCR MObBQUQCR∗ MObBQQCR+UQCR∗

sol time(s) #nodes sol time(s) #nodes sol time(s) #nodes sol time(s) #nodes sol time(s) #nodes

20

25 46 3 15.28 12569 3 10.58 12685 3 13.85 12692 3 10.49 12684 3 10.89 12691

50 26 3 3.55 2814 3 2.87 2943 3 3.85 2945 3 3.42 2940 3 3.37 2942

75 29 3 7.76 6586 3 6.11 6981 3 7.47 7049 3 6.66 6073 3 7.20 7044

100 27 3 2.58 1874 3 2.34 1917 3 2.68 1919 3 2.54 1911 3 2.86 1911

25

25 39 3 77.11 57986 3 236.50 70366 3 81.50 70375 3 69.24 70320 3 70.22 70329

50 36 3 7.82 5579 3 6.11 6119 3 8.90 6123 3 6.82 6118 3 7.28 6122

75 54 3 38.02 28010 3 30.81 28587 3 37.15 28596 3 34.17 28356 3 34.50 28365

100 29 3 2.91 1721 3 2.57 1734 3 4.17 1734 3 2.75 1725 3 3.69 1725

30

25 37 3 102.27 66127 3 79.44 72409 3 91.04 72409 3 82.60 72283 3 83.17 72283

50 58 2 29.84 19899 2 22.98 20033 2 29.25 20033 2 27.04 19740 2 25.34 19740

75 34 3 23.48 15398 3 19.22 16241 3 26.79 16640 3 21.13 15854 3 22.84 16378

100 30 3 6.68 3484 3 6.30 3529 3 8.03 3529 3 6.69 3507 3 7.61 3507

35

25 31 3 48.00 27566 3 37.07 27769 3 44.06 27769 3 39.91 27703 3 41.81 27703

50 71 2 88.21 52597 2 73.51 53943 2 88.14 53943 2 76.26 53800 2 77.17 53800

75 55 3 238.94 140667 3 194.27 152734 3 234.87 152734 3 203.16 151863 3 203.50 151863

100 31 3 8.90 3848 3 7.88 3881 3 13.78 3881 3 10.21 3875 3 11.48 3875

40

25 43 3 444.06 226818 3 331.12 235557 3 391.68 235557 3 340.79 235377 3 342.21 235377

50 57 3 293.61 140495 3 241.28 155633 3 271.17 157365 3 247.49 148392 3 269.34 152065

75 65 2 114.15 56598 2 85.61 57303 2 117.77 57306 2 92.68 57115 2 98.05 57118

100 74 2 705.46 351445 2 602.865 393893 2 712.47 393893 2 659.09 369361 2 678.43 369361
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Results on bi-objective kQKP
Comparison with the ϵ-constraint method available in JuMP at
https://jump.dev/JuMP.jl/stable/packages/MultiObjectiveAlgorithms

n density% ⌊#NDP⌋ ϵ-constraint MObBQUQCR

sol time(s) sol time(s)

20

25 46 3 7.40 3 10.58

50 26 3 3.69 3 2.87

75 29 3 3.94 3 6.11

100 27 3 6.26 3 2.34

25

25 39 3 11.09 3 236.50

50 36 3 7.01 3 6.11

75 54 3 21.32 3 30.81

100 29 3 6.26 3 2.57

30

25 37 3 13.03 3 79.44

50 58 3 47.89 2 22.98

75 34 3 19.03 3 19.22

100 30 3 8.26 3 6.30

35

25 31 3 19.46 3 37.07

50 71 3 76.61 2 73.51

75 55 3 47.67 3 194.27

100 31 3 12.94 3 7.88

40

25 43 3 45.82 3 331.12

50 57 3 82.65 3 241.28

75 65 3 110.90 2 85.61

100 74 3 217.96 2 602.865
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Take-home messages

MOMINLPs are challenging (and engaging!) problems.

Single-objective branch-and-bound concepts have been
extended through the enclosure, the lower bound sets and upper
bound sets concepts.

The nondominated set can be exactly retrieved for:
MO integer nonlinear problems (it is a finite set);
BO mixed-integer linear problems (the aim is detecting the extreme
nondominated points).

The quadratic convex reformulation paradigm can be extended to
the multi-objective setting to define promising branch-and-bound
methods.

Thanks for your attention!
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