Multistage Stochastic Programs: Approximations, Bounds and Time Consistency

Georg Pflug University of Vienna

Multistage stochastic optimization problems

Many real decision problems under uncertainty involve several decision stages:

- hydropower storage and generation management
- thermal electricity generation
- portfolio management
- logistics
- asset/liabilty management in insurance

At each time t = 0, 1, ..., T - 1 a decision x_t can/must be made. We call the sequence $x = (x_0, x_1, ..., x_{T-1})$ a *strategy*. The costs of the strategy x is expressed in terms of a cost function, which depends also on some random parameters (the scenario process) $\xi = (\xi_1, ..., \xi_T)$ defined on some probability space (Ω, \mathcal{F}, P)

$$Q(x_0, \xi_1, x_1, \ldots, x_{T-1}, \xi_T).$$

Decisions can only be made on the basis of the available information. For this reason, we assume that a filtration $\mathfrak{F} = (\mathcal{F}_1, \dots, \mathcal{F}_T = \mathcal{F})$ is defined in (Ω, \mathcal{F}, P) such that $\xi_t \triangleleft \mathcal{F}_t$ (ξ_t is measurable w.r.t. \mathcal{F}_t).

The final objective is to minimize a functional ${\cal R}$ of the stochastic cost function, such as the expectation, a quantile or some other functional ${\cal R}$

$$(Opt) \left\| \begin{array}{l} \text{Minimize in } x_0, x_1(\xi_1), \dots, x_{T-1}(\xi_1, \dots, \xi_{T-1}) :\\ \mathcal{R}[Q(x_0, \xi_1, \dots, x_{T-1}, \xi_T)] \\ \text{s.t. } x \lhd \mathfrak{F} \\ \text{and possibly other constraints on } x_0, \dots, x_{T-1} : x \in \mathbb{X} \end{array} \right.$$

 $x \triangleleft \mathfrak{F}$ means that $x_t \triangleleft \mathcal{F}_t$, i.e. that the decisions are *nonanticipative*.

In order to numerically solve the multiperiod stochastic optimization problem, the stochastic process (ξ_t) must be approximated by a simple stochastic process $\tilde{\xi}_t$, which takes only a small number of values. Likewise the filtration \mathfrak{F} must be approximated by a smaller one $\tilde{\mathfrak{F}}$ such that $\sigma(\tilde{\xi}) \subseteq \mathfrak{F}$.

$$\tilde{F}(\tilde{x}_1,\ldots,\tilde{x}_{T-1})=\mathcal{R}[Q(\tilde{x}_0,\tilde{\xi}_1,\tilde{x}_1,\ldots,\tilde{x}_{T-1},\tilde{\xi}_T)]$$

$$(\widetilde{Opt}) \left\| \begin{array}{l} \text{Minimize in } \tilde{x}_0, x_1(\tilde{\xi}_1), \dots, \tilde{x}_{T-1}(\tilde{\xi}_1, \dots, \tilde{\xi}_{T-1}) :\\ \mathcal{R}[Q(\tilde{x}_0, \tilde{\xi}_1, \dots, \tilde{x}_{T-1}, \tilde{\xi}_T)] \\ \text{s.t. } \tilde{x} \lhd \tilde{\mathfrak{F}} \\ \text{and possibly other constraints} \tilde{x} \in \tilde{\mathbb{X}}. \end{array} \right.$$

A valuated tree

Scenario trees are valuated trees: The nodes are valuated with the scenario process values, the arcs are valuated with the conditional probabilities.

An exemplary finite tree process $\nu = (\nu_0, \nu_1, \nu_2)$ with nodes $\mathcal{N} = \{1, \dots 10\}$ and leaves $\mathcal{N}_2 = \{5, \dots 10\}$ at T = 2 stages. The

Distances for Multistage Stochastic Optimization

The Kantorovich/Wasserstein distance.

Let L(h) be the Lipschitz constant of the function h:

$$L(h) = \sup\{\frac{|h(u) - h(v)|}{d(u, v)} : u \neq v\}.$$

The Kantorovich distance.

$$\mathsf{d}_1(P, \tilde{P}) = \sup\{\int h \ dP - \int \ h d\tilde{P} : L(h) \leq 1\}.$$

Theorem (Kantorovich-Rubinstein). Dual version of Kantorovich-distance:

 $\begin{aligned} \mathsf{d}_1(P,\tilde{P}) &= &\inf\{\mathbb{E}(\mathsf{d}(X,Y):(X,Y) \text{ is a bivariate r.v. with} \\ & \text{given marginal distributions } P \text{ and } \tilde{P}\}. \end{aligned}$

Generalization: The Wasserstein-distance of order r

 $d_r(P, \tilde{P}) = \inf \{ \left(\int d(u, v)^r \ d\pi(u, v) \right)^{1/r} : \pi \text{ is a probability distribution} \\ \text{on } \Xi \times \tilde{\Xi} \text{ with given marginal distributions } P \text{ and } \tilde{P} \}.$

Closedness in Wasserstein distance implies closedness in various other aspects

Assume that
$$X \sim P$$
 and $\tilde{X} \sim \tilde{P}$. Then
1. $\left| \mathbb{E}|X|^{p} - \mathbb{E}|\tilde{X}|^{p} \right| \leq p \cdot d_{r} \left(P, \tilde{P}\right) \cdot \max\left\{ \mathbb{E}^{\frac{r-1}{r}} \left[|X|^{r \cdot \frac{p-1}{r-1}}\right], \mathbb{E}^{\frac{r-1}{r}} \left[|\tilde{X}|^{r \cdot \frac{p-1}{r-1}}\right] \right\},$
2. $\left| \mathbb{E}(X^{p}) - \mathbb{E}(X^{p}) \right| \leq p \cdot d_{r} \left(P, \tilde{P}\right) \cdot \max\left\{ \mathbb{E}^{\frac{r-1}{r}} \left[|X|^{r \cdot \frac{p-1}{r-1}}\right], \mathbb{E}^{\frac{r-1}{r}} \left[|\tilde{X}|^{r \cdot \frac{p-1}{r-1}}\right] \right\}$ for p an integer,
3. $\left| \mathbb{E}X^{2} - \mathbb{E}\tilde{X}^{2} \right| \leq 2 \cdot d_{2} \left(P, \tilde{P}\right) \cdot \max\left\{ \mathbb{E}^{\frac{1}{2}} \left[X^{2}\right], \mathbb{E}^{\frac{1}{2}} \left[\tilde{X}^{2}\right] \right\},$
4. $\left| \mathbb{E}|X|^{r} - \mathbb{E}|\tilde{X}|^{r} \right| \leq r \cdot d_{r} \left(P, \tilde{P}\right) \cdot \max\left\{ \mathbb{E}^{\frac{r-1}{r}} \left[|X|^{r}\right], \mathbb{E}^{\frac{r-1}{r}} \left[|\tilde{X}|^{r}\right] \right\}$ and
5. $\left| \mathbb{E}|X|^{p} - \mathbb{E}|\tilde{X}|^{p} \right| \leq p \cdot d_{2} \left(P, \tilde{P}\right) \cdot \max\left\{ \mathbb{E}^{\frac{1}{2}} \left[|\tilde{X}|^{2(p-1)}\right], \mathbb{E}^{\frac{1}{2}} \left[|\tilde{X}|^{2(p-1)}\right] \right\},$
where $p \geq 1$ and $r > 1$.

Trees are nested distributions

	().2	0.3	0.5	
$\mathbb{P} =$	3	8.0	3.0	2.4	
	0.4 0.2 0.4	0.2 0.4	[<u>1.0</u>] [0.6 0.4	
	6.0 4	.7 3.3	2.8	1.0 5.1	

Distances between trees as nested distributions

Definition. For two nested distributions $\mathbb{P} \sim (\Xi, \mathcal{F}, P, \xi)$, $\tilde{\mathbb{P}} \sim (\tilde{\Xi}, \tilde{\mathcal{F}}, \tilde{P}, \tilde{\xi})$ and a distance function d on \mathbb{R}^m the *nested distance of order* $r \geq 1$ – denoted dl_r $(\mathbb{P}, \tilde{\mathbb{P}})$ – is the optimal value of the optimization problem

$$\begin{array}{ll} \underset{(\mathrm{in}\ \pi)}{\text{minimize}} & \left(\int d\left(\xi(\omega), \tilde{\xi}(\tilde{\omega})\right)^r \pi\left(\mathrm{d}\omega, \mathrm{d}\tilde{\omega}\right)\right)^{\frac{1}{r}} \\ \text{subject to} & \pi\left(M \times \tilde{\Xi} \mid \mathcal{F}_t \otimes \tilde{\mathcal{F}}_t\right) = P\left(M \mid \mathcal{F}_t\right) & (M \in \mathcal{F}_T) \\ & \pi\left(\Xi \times N \mid \mathcal{F}_t \otimes \tilde{\mathcal{F}}_t\right) = \tilde{P}\left(N \mid \tilde{\mathcal{F}}_t\right) & (N \in \tilde{\mathcal{F}}_T) \end{array}$$

$$(1)$$

where the infimum in (1) is among all bivariate probability measures $\pi \in \mathcal{P}(\Omega \times \Omega')$, which are measures on the product sigma algebra $\mathcal{F}_T \otimes \tilde{\mathcal{F}}_T$. We will refer to the nested distance also as *process distance*, or *multistage distance*. The nested distance dl₂ (order r = 2), with d a weighted Euclidean distance is referred to as *quadratic nested distance*.

The nested distance between discrete trees can be calculated by solving the a linear program

$$\begin{array}{ll} \underset{(in \pi)}{\text{minimize}} & \sum_{i,j} \pi_{i,j} \cdot d_{i,j}^r \\ \text{subject to} & \sum_{j \succ n} \pi \left(i, j \mid m, n \right) = P \left(i \mid m \right) \quad (m \prec i, n), \\ & \sum_{i \succ m} \pi \left(i, j \mid m, n \right) = \tilde{P} \left(j \mid n \right) \quad (n \prec j, m), \\ & \pi_{i,j} \ge 0 \text{ and } \sum_{i,j} \pi_{i,j} = 1, \end{array}$$

where again $\pi_{i,j}$ is a matrix defined on the leave nodes $(i \in \mathcal{N}_T, j \in \mathcal{N}_T')$ and $m \in \mathcal{N}_t$, $n \in \mathcal{N}_t'$ are arbitrary nodes. The conditional probabilities $\pi(i,j|m,n)$ are given by

$$\pi(i,j|m,n) = \frac{\pi_{i,j}}{\sum_{i' \succ m, j' \succ n} \pi_{i',j'}}$$

The main approximation result

Let Q_L be the family of all real valued cost functions $Q(x_0, y_1, x_1, \dots, x_{T-1}, y_T)$, defined on $\mathbb{X}_0 \times \mathbb{R}^{n_1} \times \mathbb{X}_1 \times \dots \times \mathbb{X}_{T-1} \times \mathbb{R}^{n_T}$ such that

- $x = (x_0, \dots, x_{T-1}) \mapsto Q(x_0, y_1, x_1, \dots, x_{T-1}, y_T)$ is convex for fixed $y = (y_1, \dots, y_T)$ and
- $y_t \mapsto Q(x_0, y_1, x_1, \dots, x_{t_1}, y_T)$ is Lipschitz with Lipschitz constant L for fixed x.

Consider the optimization problem $(Opt(\mathbb{P}))$

$$v_Q(\mathbb{P}) := \min \{ \mathbb{E}_P[Q(x_0, \xi_1, x_1, \dots, x_{T-1}, \xi_T)] : x \lhd \mathfrak{F}, x \in \mathbb{X} \},$$

where $\mathbb X$ is a convex set and $\mathbb P$ is the nested distribution of the scenario process.

An approximative problem $(Opt(\tilde{\mathbb{P}}))$ is given by

$$v_Q(\tilde{\mathbb{P}}) := \min \{ \mathbb{E}_{\tilde{P}}[Q(x_0, \tilde{\xi}_1, x_1, \dots, x_{T-1}, \tilde{\xi}_T)] : x \lhd \tilde{\mathfrak{F}}, x \in \mathbb{X} \},$$

where $\tilde{\mathbb{P}}$ is the nested distribution of the approximative scenario process.

Theorem. For Q in Q_L

$$|v_Q(\mathbb{P}) - v_Q(\tilde{\mathbb{P}})| \leq L \cdot \mathsf{dl}(\mathbb{P}, \tilde{\mathbb{P}}).$$

Remarks.

The bound is sharp: Let P and P̃ be two nested distributions on [Ξ, dl]. Then there exists a cost function Q(·) ∈ H₁ such that

$$v_Q(\mathbb{P}) - v_Q(\tilde{\mathbb{P}}) = \mathsf{dl}(\mathbb{P}, \tilde{\mathbb{P}}).$$

The inequality

$$|v_Q(\mathbb{P}) - v_Q(ilde{\mathbb{P}})| \leq L \cdot d(\mathbb{P}, ilde{\mathbb{P}}),$$

where d is the multivariate Kantorovich distance, does NOT hold.

Let G_Y be the distribution function of Y. Then the distortion functional \mathcal{R}_{σ} with distortion density σ is defined as

$$\mathcal{R}_{\sigma}(Y) = \int_0^1 \sigma(u) \mathcal{G}_Y^{-1}(u) \, du$$

A special example is the average value-at-risk, which has distortion density

$$\sigma_{\alpha}(u) = \begin{cases} 0 & u < \alpha \\ \frac{1}{1-\alpha} & u \ge \alpha \end{cases}$$

An extension of the main result

Theorem. Let \mathcal{R}_{σ} be a distortion risk functional with bounded distortion, $\sigma \in L^{\infty}$. Consider the optimization problem $(Opt(\mathbb{P}))$

$$v_{Q,\mathcal{R}_{\sigma}}(\mathbb{P}) := \min\{\mathcal{R}_{\sigma,\mathbb{P}}[Q(x_0,\xi_1,x_1,\ldots,x_{T-1},\xi_T)] : x \triangleleft \mathfrak{F}, x \in \mathbb{X}\},\$$

where $\mathbb X$ is a convex set and $\mathbb P$ is the nested distribution of the scenario process.

An approximative problem $(\mathit{Opt}(\tilde{\mathbb{P}}))$ is given by

$$v_{Q,\mathcal{R}}(\tilde{\mathbb{P}}) := \min\{\mathcal{R}_{\sigma,\tilde{\mathbb{P}}}[Q(x_0,\tilde{\xi}_1,x_1,\ldots,x_{T-1},\tilde{\xi}_T)] : x \lhd \tilde{\mathfrak{F}}, x \in \mathbb{X}\},\$$

where $\tilde{\mathbb{P}}$ is the nested distribution of the approximative scenario process. Then

$$|v_{\mathcal{Q},\mathcal{R}_{\sigma}}(\mathbb{P}) - v_{\mathcal{Q},\mathcal{R}_{\sigma}}(\tilde{\mathbb{P}})| \leq L \cdot \|\sigma\|_{\infty} \cdot \mathsf{dl}_{1}\left(\mathbb{P},\tilde{\mathbb{P}}
ight).$$

Dynamic decomposability and Bellmann's principle

We now maximize an utility functional $\ensuremath{\mathcal{U}}$ of a profit variable.

$$\mathcal{U}(\mathsf{Profit}) = -\mathcal{R}(-\mathsf{Profit}) = -\mathcal{R}(\mathsf{Loss}).$$

The standard multiperiod maximization problem is

$$\max\{\mathcal{U}[H(x_0,\xi_1,\ldots,x_{T-1},\xi_T)]:x_t \triangleleft \mathcal{F}_t, x_t \in \mathbb{X}_t(x_{0:t-1},\xi_{1:t})\}$$
(2)

where \mathcal{U} is an utility functional and H is a profit function. The problem is dynamically decomposable, if there exist functions H_t and functionals \mathcal{U}_t such that (2) is equivalent to

$$\max_{x_0 \in \mathbb{X}_0} \left(H_0(x_0) + \max_{x_1 \in \mathbb{X}(x_0,\xi_1)} \mathcal{U}_1 \left(H_1(x_{0:1},\xi_1) + \dots \right. \\ \left. \dots \max_{x_{T-1} \in \mathbb{X}(x_{0:T-2},\xi_{1:T-1})} \mathcal{U}_{T-1} \left(H_{T-1}(x_{0:T-1},\xi_{0:T}) \right) \right) \right).$$

The time-consistency principle

If the optimal decision sequence is implemented, but only up to time *t*, and at time *t* the problem is resolved for the remaining times (keeping the past decisions fixed), then the optimal solution of this subproblem should coincide with that of the original problem. If a stochastic problem is decomposable in time, then a Bellmann principle holds, the solution is time-consistent and can be found by backward induction.

If the probability functional is the expectation $\mathcal{U} = \mathbb{E}$ and the only measurability constraint is $x_t \triangleleft \mathcal{F}_t$, then time decomposability holds. Time decomposability may not hold, if

- the functional is not the expectation
- other measurability conditions are in place, (e.g. x_t ⊲ F_s for s < t).

Probability functionals

Let the random variable Y have distribution function $G_Y(u) = P\{Y \le u\}$ and quantile function $\mathbb{VQR}_p(Y) = \inf\{u : G_Y(u) \ge p\}$. We define

- the Average Value-at-Risk (measures acceptability or utility of profits)
 AV@R(Y) = ¹/_α ∫₀^α V@R_p(Y) dp
 AV@R(Y) = inf{E(YZ) : 0 ≤ Z ≤ 1/α; E(Z) = 1}
- ► the upper Average Value-at-Risk (measures risk of costs) UAV@R(Y) = $\frac{1}{1-\alpha} \int_{\alpha}^{1} \mathbb{V}@R_{p}(Y) dp$
- a distortion functional $\int_0^1 \mathbb{V}@R_p(Y)h(p) dp$

► the entropic functional
$$\frac{-1}{\gamma} \mathbb{E}[\exp(-\gamma Y)]$$

 $\mathbb{A} V @ \mathsf{R}_0(Y) = \text{essinf}(Y)$ $\mathbb{A} V @ \mathsf{R}_1(Y) = \mathbb{E}(Y)$
 $\mathbb{U} \mathbb{A} V @ \mathsf{R}_0(Y) = \mathbb{E}(Y)$ $\mathbb{U} \mathbb{A} V @ \mathsf{R}_1(Y) = \text{esssup}(Y)$

We consider a probability space (Ω, \mathcal{F}, P) . Let \mathcal{F}_1 be a σ -field contained in \mathcal{F} . A mapping $\mathcal{U}(\cdot|\mathcal{F}_1) : L_p(\mathcal{F}) \to L_{p'}(\mathcal{F}_1)$ is called *conditional utility mapping* (with observable information \mathcal{F}_1) if the following conditions are satisfied for all $Y, \lambda \in [0, 1]$:

- ▶ predictable translation-equivariance. $\mathcal{U}(Y + Y_1 | \mathcal{F}_1) = \mathcal{U}(Y | \mathcal{F}_1) + Y_1$, if $Y_1 \triangleleft \mathcal{F}_1$
- concavity $\mathcal{U}(\lambda Y + (1 \lambda)\tilde{Y}|\mathcal{F}_1) \geq \lambda \mathcal{U}(Y|\mathcal{F}_1) + (1 \lambda)\mathcal{U}(\tilde{Y}|\mathcal{F}_1)$,
- monotonicity $Y \leq \tilde{Y}$ implies $\mathcal{U}(Y|\mathcal{F}_1) \leq \mathcal{U}(\tilde{Y}|\mathcal{F}_1)$

The negative $\mathcal{R}(Y|\mathcal{F}_1) := -\mathcal{U}(Y|\mathcal{F}_1)$ is called a conditional risk functional.

Let $\mathcal{F}_0 = (\Omega, \emptyset)$ be the trivial σ -algebra. Then $\mathcal{U}(\cdot | \mathcal{F}_1)$ is an unconditional utility functional.

A full problem and the conditional problem "given node 3". The decision problem is time-consistent, if $x_i = \bar{x}_i$, for all nodes, which are in the subtree of the conditioning node.

Time inconsistency appears in a natural way in stochastic risk-adverse optimality problems. We want to find

 $\max \mathbb{E}(Y) + 0.5 \mathbb{A} V @ \mathsf{R}_{0.05}(Y).$

double line = optimal decision

The conditional problem given the first node:

We consider a probability space (Ω, \mathcal{F}, P) and a filtration $\mathfrak{F} \in \mathcal{F}$. Let $\mathcal{U}_2(\cdot|\mathcal{F}_1)$ be a conditional acceptability-type mapping and let

$\mathcal{U}_1(\cdot)$

be an unconditional acceptability measure. Typically, but not necessarily, \mathcal{U}_1 is the unconditional counterpart of $\mathcal{U}_2(\cdot|\mathcal{F}_1)$. **Definition.** (Artzner at al. 2007). The pair $\mathcal{U}_1(\cdot)$, $\mathcal{U}_2(\cdot|\mathcal{F}_1)$ is called *time consistent*, if for all $Y, \tilde{Y} \in \mathcal{Y}$ the implication

$$\mathcal{U}_2(Y|\mathcal{F}_1) \leq \mathcal{U}_2(ilde Y|\mathcal{F}_1) ext{ a.s. } \Longrightarrow \mathcal{U}_1(Y) \leq \mathcal{U}_1(ilde Y)$$

holds.

Illustration

 \mathcal{F}_0

 \mathcal{F}

 \mathcal{F}_1

 \mathcal{F}_0

 ${\mathcal F}$

Ϋ́

 \tilde{y}_1 p_1 \tilde{y}_2 p_2 \tilde{y}_2 p_3

 \mathcal{F}_1

 $\mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}(Y|\mathcal{F}_1) = (4;0) \geq (3;0) = \mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}(\tilde{Y}|\mathcal{F}_1)$

while

$$\mathbb{A}$$
V@R_{0.1} $(Y) = 0.9 < 1.8 = \mathbb{A}$ V@R_{0.1} $(\tilde{Y}).$

Definition. A pair $U_1(\cdot)$, $U_2(\cdot|\mathcal{F}_1)$ is called *acceptance consistent*, if for all $Y \in \mathcal{Y}$ the implication

```
ess inf \mathcal{U}_2(Y|\mathcal{F}_1) \leq \mathcal{U}_1(Y)
```

holds. It is called rejection consistent, if

```
\operatorname{ess} \sup \mathcal{U}_2(Y|\mathcal{F}_1) \geq \mathcal{U}_1(Y).
```

(see e.g. Weber, 2006). **Proposition.** If $\mathcal{U}_1(0) = 0$ and $\mathcal{U}_2(0|\mathcal{F}_1) = 0$ a.s. and $\mathcal{U}_1(\cdot)$, $\mathcal{U}_2(\cdot|\mathcal{F}_1)$ are translation equivariant then time consistency implies acceptance and rejection consistency. **Theorem.** (Artzner et. al., 2007) A pair $\mathcal{U}_1(\cdot)$, $\mathcal{U}_2(\cdot|\mathcal{F}_1)$ with translation equivariant $\mathcal{U}(\cdot|\mathcal{F}_1)$, the property $\mathcal{U}(0|\mathcal{F}_1) = 0$ and monotonic $\mathcal{U}(\cdot)$ is time consistent if and only if it is recursive. **Proof.** Let the pair be recursive and let $\mathcal{U}_2(Y|\mathcal{F}_1) \leq \mathcal{U}_2(\tilde{Y}|\mathcal{F}_1)$. Then, by monotonicity, $\mathcal{U}_1(Y) = \mathcal{U}_1(\mathcal{U}_2(Y|\mathcal{F}_1)) \leq \mathcal{U}_1(\mathcal{U}_2(\tilde{Y}|\mathcal{F}_1)) = \mathcal{U}_1(\tilde{Y})$. Conversely, let the pair be time consistent. By assumption,

$$\mathcal{U}_2(\mathcal{U}_2(Y|\mathcal{F}_1)|\mathcal{F}_1) = \mathcal{U}_2(\mathcal{U}_2(Y|\mathcal{F}_1) + 0|\mathcal{F}_1) = \mathcal{U}_2(Y|\mathcal{F}_1) + 0.$$

Setting $ilde{Y} = \mathcal{U}_2(Y|\mathcal{F}_1)$ and using the time consistency, leads to

$$\mathcal{U}_1(\tilde{Y}) = \mathcal{U}_1(\mathcal{U}_2(Y|\mathcal{F}_1)) = \mathcal{U}_1(Y),$$

which is the equation of recursivity.

Let a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $\mathfrak{F} = (\mathcal{F}_0, \ldots, \mathcal{F}_T)$ of σ -fields \mathcal{F}_t , $t = 0, \ldots, T$, with $\mathcal{F}_T = \mathcal{F}$ be given. Let $\mathcal{Y}_t := L_p(\mathcal{F}_t)$ for $t = 1, \ldots, T$ and some $p \in [1, +\infty)$. Let, for each $t = 1, \ldots, T$, conditional acceptability mappings $\mathcal{U}_{t-1} := \mathcal{U}(\cdot | \mathcal{F}_{t-1})$ from \mathcal{Y}_T to \mathcal{Y}_{t-1} be given. Introduce a multi-period probability functional \mathcal{U} on $\mathcal{Y} := \times_{t=1}^T \mathcal{Y}_t$ by compositions of the conditional acceptability mappings \mathcal{U}_{t-1} , $t = 1, \ldots, T$, namely,

$$\begin{aligned} \mathcal{U}(Y;\mathfrak{F}) &:= & \mathcal{U}_0[Y_1 + \dots + \mathcal{U}_{T-2}[Y_{T-1} + \mathcal{U}_{T-1}(Y_T)] \cdot] \\ &= & \mathcal{U}_0 \circ \mathcal{U}_1 \circ \dots \circ \mathcal{U}_{T-1}(\sum_{t=1}^T Y_t) \end{aligned}$$

for every $Y_t \in \mathcal{Y}_t$. (Ruszczynski and Shapiro, 2006). Notice that these functionals are recursive in a trivial way.

Example. Consider the conditional Average Value-at-Risk (of level $\alpha \in (0, 1]$) as conditional acceptability mapping

$$\mathcal{U}_{t-1}(Y_t) := \mathbb{A}\mathsf{VoR}_{\alpha}(\cdot | \mathcal{F}_{t-1})$$

for every $t = 1, \ldots, T$. Then the multi-period probability functional

$$n \mathbb{A} \mathsf{V} @\mathsf{R}_{\alpha}(Y; \mathfrak{F}) = \mathbb{A} \mathsf{V} @\mathsf{R}_{\alpha}(\cdot | \mathcal{F}_{0}) \circ \cdots \circ \mathbb{A} \mathsf{V} @\mathsf{R}_{\alpha}(\cdot | \mathcal{F}_{T-1})(\sum_{t=1}^{T} Y_{t})$$

satisfies is called the nested Average Value-at-Risk.

Time consistency contradicts information monotonicity.

In both examples, the final income Y is the same, but in the right example, the filtration is finer. One calculates

$$\mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}[\mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}(Y | \mathcal{F}_1^{(1)})] = 0.9 > 0 = \mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}[\mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}(Y | \mathcal{F}_1^{(2)})].$$

Notice that

$$\mathbb{E}[\mathbb{A}\mathsf{V}\mathsf{@R}_{0.1}(\mathsf{Y}|\mathcal{F}_1^{(1)})] = \mathbb{E}[\mathbb{A}\mathsf{V}\mathsf{@R}_{0.1}(\mathsf{Y}|\mathcal{F}_1^{(2)})] = 0.9.$$

- The expectation is information monotone.
- The essential infimum (or essential supremum) is information monotone

Theorem.(R. Kovacevic, G.P.) If a $U_t(\cdot|\cdot)$ are distortion functionals, but neither the conditional expectation nor the essential infimum, then information monotonicity of the nested functional U does not hold.

Let $\alpha \lhd \mathcal{F}_t$ be a random variable with values in [0,1]. Define the $\mathbb{A}V@R$ with random level α as

 $\mathbb{A}\mathrm{VeR}_{\alpha}(Y|\mathcal{F}_{t}) = \inf\{\mathbb{E}(YZ|\mathcal{F}_{t}) : \mathbb{E}(Y|\mathcal{F}_{t}) = 1, 0 \leq Z; \alpha Z \leq 1\}.$

It has an alternate characterization for $\alpha > {\rm 0}$ by

$$\mathbb{A}\mathsf{VeR}_{\alpha}(Y|\mathcal{F}_{t}) = \sup\{Q - \frac{1}{\alpha}\mathbb{E}([Q - Y]_{+}|\mathcal{F}_{t}) : Q \triangleleft \mathcal{F}_{t}\}.$$

The AV@R with random level obeys all properties like the usual AV@R, i.e. translation-equivariance, concavity, monotonicity, and positive homogeneity. Moreover, $\alpha \mapsto AV@R_{\alpha}$ is convex.

Illustration: Artzner's Example

The total $\mathbb{A}V@R_{\frac{2}{3}}$ is -1, while $\mathbb{A}V@R_{\frac{2}{3}}(Y|\mathcal{F}_1) \equiv 1$.

Theorem. Nested decomposition of the $\mathbb{A}V@R$ Let $Y \in L^1(\mathcal{F}_T)$, $\mathcal{F}_t \subset \mathcal{F}_T \subset \mathcal{F}_T$.

1. For $\alpha \in [0,1]$ the Average Value-at-Risk obeys the decomposition

$$\mathbb{A}\mathsf{V}@\mathsf{R}_{\alpha}(Y) = \inf \mathbb{E}\left[Z_{t} \cdot \mathbb{A}\mathsf{V}@\mathsf{R}_{\alpha \cdot Z_{t}}(Y|\mathcal{F}_{t})\right], \quad (3)$$

where the infimum is among all densities $Z_t \triangleleft \mathcal{F}_t$ with $0 \leq Z_t$, $\alpha Z_t \leq \mathbf{1}$ and $\mathbb{E}Z_t = 1$. For $\alpha > 0$ the infimum in (3) is attained.

- 2. Moreover if Z is the optimal dual density for the $\mathbb{A}V@R$, that is $\mathbb{A}V@R_{\alpha}(Y) = \mathbb{E}YZ$ with $Z \ge 0$, $\alpha Z \le 1$ and $\mathbb{E}Z = 1$, then $Z_t = \mathbb{E}[Z|\mathcal{F}_t]$ is the best choice in (3).
- 3. The conditional Average Value-at-Risk at random level $\alpha \triangleleft \mathcal{F}_t$ ($0 \leq \alpha \leq 1$) has the recursive (nested) representation

$$\mathbb{A} \mathsf{V} \mathbb{e} \mathsf{R}_{\alpha} \left(Y | \mathcal{F}_{t} \right) = \inf \mathbb{E} \left[Z_{\tau} \cdot \mathbb{A} \mathsf{V} \mathbb{e} \mathsf{R}_{\alpha \cdot Z_{\tau}} \left(Y | \mathcal{F}_{\tau} \right) | \mathcal{F}_{t} \right], \qquad (4)$$

where the infimum is among all densities $Z_{\tau} \triangleleft \mathcal{F}_{\tau}$ with $0 \leq Z_{\tau}$, $\alpha Z_{\tau} \leq \mathbf{1}$ and $\mathbb{E}[Z_{\tau}|\mathcal{F}_t] = \mathbf{1}$.

Illustration

$$\begin{array}{c|ccccc} & Y & Z & Z_{1} = \mathbb{E}(Z|\mathcal{F}_{1}) \\ & & \frac{1}{3} & 14 & \frac{3}{2} \\ & & \frac{1}{3} & 12 & \frac{3}{2} \\ & & \frac{1}{3} & -10 & \frac{3}{2} \\ & & & \frac{1}{3} & 22 & 0 \\ & & & \frac{1}{3} & 22 & 0 \\ & & & \frac{1}{3} & -20 & \frac{3}{2} \end{array} \right\} \begin{array}{c} & & \mathbb{E}(Z|\mathcal{F}_{1}) \\ &$$

The total AV@R is $AV@R_{\alpha}(Y) = \mathbb{E}[Z_1AV@R_{\alpha Z_1}(Y|\mathcal{F}_1)] = -1$, while $AV@R_{\frac{2}{3}}(Y|\mathcal{F}_1) \equiv 1$.

Notice that for $t < \tau$

 $\mathbb{A}\mathsf{V}\mathtt{@R}_{\alpha}(Y|\mathcal{F}_{t}) \leq \mathbb{E}[\mathbb{A}\mathsf{V}\mathtt{@R}_{\alpha}(Y|\mathcal{F}_{\tau})|\mathcal{F}_{t})] \leq \mathbb{E}(Y|\mathcal{F}_{t})$

Let $H(x_0, \xi_1, \ldots, x_{T-1}, \xi_T)$ be some profit function depending on the random scenario process $\xi = (\xi_1, \ldots, \xi_T)$ and the decisions $x = (x_0, \ldots, x_{T-1})$ The multistage decision problem is

maximize
$$\mathbb{E}H(x,\xi) + \gamma \cdot \mathbb{A}\text{VeR}[H(x,\xi)]$$

s.t. $x \triangleleft \mathcal{F}$
 $x \in \mathcal{X},$ (5)

where $H(x,\xi)$ is a short notation for $H(x_0,\xi_1,\ldots,x_{T-1},\xi_T)$.

We require the real-valued function H to be concave in x, for x in a convex set, such that (ξ any fixed state)

$$H\left(\left(1-\lambda
ight)x'+\lambda x'',\xi
ight)\geq\left(1-\lambda
ight)H\left(x',\xi
ight)+\lambda H\left(x'',\xi
ight).$$

By the monotonicity property and concavity of the utility functional $\mathbb{A}V@R$, the mapping $x \mapsto \mathbb{A}V@R[H(x,\xi)]$ is concave as well. With $x_{t_1:t_2}$ we denote the subvector $x_{t_1}, x_{t_1+1}, \dots, x_{T_2}$. As typical for Markov decision processes, we define the value function

$$\mathcal{V}_{t}\left(\mathbf{x}_{0:t-1}, \alpha, \gamma\right) := \mathsf{esssup}_{\mathbf{x}_{t:\mathcal{T}}} \mathbb{E}\left[\left.H\left(\mathbf{x}_{0:\mathcal{T}}\right)\right| \mathcal{F}_{t}\right] + \gamma \cdot \mathbb{A}\mathsf{V}\mathsf{@R}_{\alpha}\left(H\left(\mathbf{x}_{0:\mathcal{T}}\right)| \mathcal{F}_{t}\right).$$

The value function depends on

- ▶ the decisions up to time t 1, $x_{0:t-1}$, where $x_{t:T}$ is chosen such that $(x_{0:T}) = (x_{0:t-1}, x_{t,T}) \in \mathcal{X}$,
- ▶ the random model parameters $\alpha \lhd \mathcal{F}_t$ and $\gamma \lhd \mathcal{F}_t$ and
- the current status of the system due to the filtration \mathcal{F}_t .

Evaluated at initial time t = 0 and assuming the sigma-algebra \mathcal{F}_0 trivial the value function relates to the initial problem as

$$\begin{aligned} \sup_{x_{0:T}} \mathbb{E}H(x_{0:T}) + \gamma \cdot \mathbb{A}\mathsf{V}@\mathsf{R}_{\alpha}\left(H(x_{0:T})\right) &= \\ &= \mathsf{esssup}_{x_{0:T}} \mathbb{E}\left[H(x_{0:T}) \left|\mathcal{F}_{0}\right] + \gamma \cdot \mathbb{A}\mathsf{V}@\mathsf{R}_{\alpha}\left(H(x_{0:T}) \left|\mathcal{F}_{0}\right.\right) \\ &= \mathcal{V}_{0}\left(\left[\right], \alpha, \gamma\right). \end{aligned}$$

Theorem. Dynamic Programming Principle. Assume that H is random upper semi-continuous with respect to x and ξ valued in some convex, compact subset of \mathbb{R}^n .

1. The value function evaluates to

$$\mathcal{V}_{\mathcal{T}}(x_{0:\mathcal{T}-1}, \alpha, \gamma) = (1 + \gamma) \operatorname{esssup}_{x_{\mathcal{T}}} H(x_{0:\mathcal{T}})$$

at terminal time T.

2. For any t < au, $(t, au \in \mathbf{T})$ the recursive relation

$$\begin{aligned} &\mathcal{V}_{t}\left(\mathsf{x}_{0:t-1},\alpha,\gamma\right) \\ &= \text{ esssup }_{\mathsf{x}_{t:\tau-1}}\text{essinf }_{\mathsf{Z}_{t:\tau}}\mathbb{E}\left[\mathcal{V}_{\tau}\left(\mathsf{x}_{0:\tau-1},\alpha\cdot\mathsf{Z}_{t:\tau},\gamma\cdot\mathsf{Z}_{t:\tau}\right)|\mathcal{F}_{t}\right], \end{aligned}$$

where $Z_{t:\tau} \triangleleft \mathcal{F}_{\tau}$, $0 \leq Z_{t:\tau}$, $\alpha Z_{t:\tau} \leq 1$ and $\mathbb{E}[Z_{t:\tau}|\mathcal{F}_t] = 1$, holds true.

The Algorithm

Step 0 Let $x_{0:T}^0$ be any feasible, initial solution of the problem (5). Set $k \leftarrow 0$. Set

$$\mathcal{Y}(x_{0:T}^{0}) = \mathbb{E}H(x_{0:T}^{0}) + \gamma \mathbb{A}\mathsf{V}@\mathsf{R}_{\alpha}(H(x_{0:T}^{0}))$$

Step 1 Find Z^k , such that $0 \le Z^k \le \frac{1}{\alpha}$, $\mathbb{E}Z^k = 1$ and define

$$Z_t^k := \mathbb{E}\left(Z^k | \mathcal{F}_t\right). \tag{6}$$

A good initial choice is often Z^k satisfying

$$\mathbb{E}Z^{k}H\left(x_{0:T}^{k}\right) = \mathbb{A}\mathsf{V}\mathfrak{O}\mathsf{R}_{\alpha}\left(H\left(x_{0:T}^{k}\right)\right).$$
(7)

Step 2 (check for local improvement). Choose

$$x_{t}^{k+1} \in \operatorname{argmax}_{x_{t} \triangleleft \mathcal{F}_{t}} \mathbb{E} \left[\left. H\left(x_{0:T}^{k} \right) \right| \mathcal{F}_{t} \right]$$
(8)

$$+ \gamma Z_t^k \mathbb{A} \mathsf{VeR}_{\alpha Z_t^k} \left(H\left(x_{0:T}^k \right) \middle| \mathcal{F}_t \right)$$
(9)

at any arbitrary stage t and a node specified by \mathcal{F}_t .

Step 3 (Verification). Accept $x_{0:t}^{k+1}$ if

$$\mathcal{Y}\left(\mathbf{x}_{0:T}^{k}\right) \leq \mathbb{E}H\left(\mathbf{x}_{0:T}^{k+1}\right) + \gamma \mathbb{A} \mathsf{VeR}_{\alpha}\left(H\left(\mathbf{x}_{0:T}^{k+1}\right)\right),$$

else try another feasible Z^k (for example $Z^k \leftarrow \frac{1}{2} (\mathbf{1} + Z^k)$, $Z^k \leftarrow (\mathbf{1} + \alpha)\mathbf{1} - \alpha Z^k$ or $Z^k = \mathbf{1}_B (P(B) \ge \alpha)$) and repeat Step 2. If no direction Z^k can be found providing an improvement, then $x_{0:T}$ is already optimal. Set

$$\mathcal{Y}\left(\mathbf{x}_{0:T}^{k+1}\right) := \mathbb{E}H\left(\mathbf{x}_{0:T}^{k+1}\right) + \gamma \mathbb{A}\mathsf{V}\mathfrak{G}\mathsf{R}_{\alpha}\left(H\left(\mathbf{x}_{0:T}^{k+1}\right)\right), \tag{10}$$

increase $k \leftarrow k + 1$ and continue with Step 1 unless

$$\mathcal{Y}\left(x_{0:T}^{k+1}\right) - \mathcal{Y}\left(x_{0:T}^{k}\right) < \varepsilon,$$

where $\varepsilon > 0$ is the desired improvement in each cycle k.

Decomposition Theorem. Let \mathcal{U} be a positively homogeneous, version independent acceptability functional.

1. \mathcal{U}_h obeys the decomposition

$$\mathcal{U}_{h}(Y) = \inf \mathbb{E}\left[Z \cdot \mathcal{U}_{Z}(Y|\mathcal{F}_{t})\right], \qquad (11)$$

where the infimum is among all feasible, positive random variables $Z \lhd \mathcal{F}_t$ satisfying $\mathbb{E}Z = 1$ and $h(U) \prec_{SSD} Z$ for $U \sim Uniform[0, 1]$.

2. Let $\mathcal{F}_t \subset \mathcal{F}_{\tau}$. The utility functional obeys the nested decomposition

$$\mathcal{U}(\mathbf{Y}|\mathcal{F}_t) = \operatorname{essinf} \mathbb{E}\Big[Z_{\tau} \cdot \mathcal{U}_{Z_{\tau}}(\mathbf{Y}|\mathcal{F}_{\tau})\Big| \mathcal{F}_t\Big],$$

the essential infimum being among all feasible random variables $Z_{\tau} \lhd \mathcal{F}_{\tau}.$

Nested decomposition of $\mathcal{R} = \frac{3}{5} U \mathbb{A} V @R_{0.7}(Y) + \frac{2}{5} U \mathbb{A} V @R_{0.4}(Y)$. We get

$$\mathcal{R}(Y) = \mathbb{E}[Z|\mathcal{R}_Z(Y|\mathcal{F}_t)] = 6.07 \cdot 1 \cdot 0.3 + 3 \cdot 0.2 \cdot 0.4 + 5.94 \cdot 2.06 \cdot 0.3 = 5.74$$

Utility functionals are typically not time consistent

Theorem. Suppose that the positively homogeneous functional $\ensuremath{\mathcal{U}}$ has a Kusuoka representation

$$\mathcal{U}(\mathbf{Y}) = \inf\{\int_0^1 \mathbb{A} \mathsf{V}@\mathsf{R}_{\alpha}(\mathbf{Y}) \, d\mu(\alpha) : \mu \in \mathcal{M}\}.$$

lf

$$\inf\{\mu([\epsilon,1-\epsilon]):\mu\in\mathcal{M}\}>0$$

for some $\epsilon > 0$ and

$$\sup\{\mu([0,\gamma]):\mu\in\mathcal{M}\}\to 0$$

for $\gamma \to 0$, then \mathcal{U} is not time-consistent as such, but has to be randomly decomposed for ensuring time-consistency.

The only exceptions are

- the expectation
- the essential infimum
- the essential supremum

These are the same functionals, which are information monotone.

- Compositions of risk functionals are time consistent (but not interpretable) and information inconsistent
- Final risk functionals are typically information consistent but not time consistent
- Exceptions are only the expectation and the (essential) infimum resp. supremum
- When using time-inconsistent functionals one one has to decide:
 - either to accept time-inconsistent decisions in a rolling horizon setup
 - or to accept decision criteria which depend on the actual path the scenario process takes.

Case study: Management of a hydrosystem

The scenario process consist of 5 components: Spot prices, Pumping prices, Inflows for 3 reservoirs. Statistical model selection methods were used to find that the inflows can be represented by a 3-dimensional $SARMA(1,2), (2,2)_52$ process, while the spot and pumping prices can be modeled by an independent process, a superposition of an additive error model based on forward prices and a spike generating process.

Observations for Inflows

Observations for Spot/Forward prices

$$\begin{split} & \text{maximize} \\ & \lambda \, \mathbb{E}[x_T^c] - (1 - \lambda) \mathbb{A} \mathsf{V} @\mathsf{R}_{1 - \alpha}[-x_T^c] \\ & \text{subject to} \\ & 0 \leq x_{t,i}^f \leq \overline{x}_i^f, \\ & \underline{x}_{s}^s \leq x_{t,j}^s \leq \overline{x}_j^s, \\ & x_{end,j}^s \leq x_{T,j}^s, \\ & x_{end,j}^s \leq x_{T,j}^s, \\ & x_{t,j}^s = x_{t-1,i}^s + \xi_{t,j}^f + \sum_{\{i \in I \mid P_{max} > 0\}} A_{i,j} \cdot x_{t-1,i}^f + \sum_{\{i \in I \mid P_{max} = 0\}} A_{i,j} \cdot x_{t,i}^f, \\ & x_{t,i}^e = x_{t-1,i}^f \cdot k^i \cdot \triangle t_{(t-1)}, \\ & x_t^c = x_{t-1}^c \cdot (1 + r)^{\triangle t_{(t-1)}} + \sum_{\{i \in I \mid k^i > 0\}} x_{t-1,i}^e \cdot \xi_t^e + \sum_{\{i \in I \mid k^i < 0\}} x_{t-1,i}^i \cdot \xi_t^p. \end{split}$$

We generate a scenario tree in a way that the nested distance between the scenario process and the scenario tree is as small as possible.

Number of stages	8
Minimal bushiness per stage	2,2,2,1,1,1,1,1
Maximal distance per stage	5,5,5,7,7,7,10,10
Number of scenarios (leaves)	392
Number of nodes 1532	

The generated five-dimensional tree

The pumping (top) and turbining (bottom) decisions

The storage levels

The stochastic discretization algorithm

- Initialization. Sample n random variates from distribution P, where n is much larger than s. Use a cluster algorithm to find s clusters. Let Z(0) = (z⁽¹⁾(0),..., z^(s)(0)) be the cluster medians. Set k = 0.
- 2. Iteration. Use a new independent sample $\xi(k)$ for the following stochastic optimization step: find the index $i \in \{1, ..., s\}$ such that

$$\mathsf{d}\left(\xi(k),\,z^{(i)}(k)\right) = \min_{\ell}\,\mathsf{d}\left(\xi(k),\,z^{(\ell)}(k)\right).$$

Set

$$z^{(i)}(k+1) = z^{(i)}(k) - a_k \cdot r d\left(\xi(k), z^{(i)}\right)^{r-1} \cdot \nabla_{z^{(i)}} d\left(\xi(k), z^{(i)}\right),$$

and leave all other points unchanged to form the new point set Z(k + 1).

- 3. **Stopping criterion.** Set k = k + 1 and goto 56. Stop, if either the predetermined number of iterations are performed or if the relative change of the point set Z is below some threshold ϵ .
- 4. Determination of the probabilities. After having fixed the final point set Z, generate another sample $\xi(1), \ldots, \xi(n)$ and find the probabilities

$$p_i = \frac{1}{n} \# \left\{ \ell : d\left(\xi(\ell), z^{(i)}\right) = \min_k d\left(\xi(\ell), z^{(k)}\right) \right\}$$

and calculate an estimate for the distance $d(P, \tilde{P})$.

The final approximate distribution is $\tilde{P} = \sum_{i=1}^{s} p_i \cdot \delta_{z^{(i)}}$.

Let a vector of minimal bushiness b_1, \ldots, b_T and maximal distances d_1, \ldots, d_T be given.

- Iterate for t = 0,..., T 1.
 For each node n of stage t
 - (i) Set $s = b_t$
 - (ii) Let $\tilde{\xi}_0, \ldots, \tilde{\xi}_{t-1}$ be the already found scenario values on the predecessors of this node. Let P be the conditional distribution of ξ_t given $\tilde{\xi}_0, \ldots, \tilde{\xi}_{t-1}$ form which one may sample. Use the stochastic discretization algorithm to generate the conditional distribution \tilde{P} sitting on s points.
 - (iii) If the dstance $d(P, \tilde{P})$ is smaller than ϵ_t , then set s = s + 1and go to (ii).
- Stop, when all nodes of stage T are generated.

Step 1– Initialization

Set $k \leftarrow 0$, and let ξ^0 be process quantizers with related transport probabilities $\pi^0(i,j)$ between scenario *i* of the original \mathbb{P} -tree and scenario $\tilde{\xi}_i^0$ of the approximating \mathbb{P}' -tree; $\mathbb{P}^0 := \tilde{\mathbb{P}}$.

Step 2 – Improve the quantizers

Find improved quantizers $\tilde{\xi}_{i}^{k+1}$:

In case of the quadratic Wasserstein distance (Euclidean distance and Wasserstein of order r = 2) set

$$\tilde{\xi}^{k+1}(n_t) := \sum_{m_t \in \mathcal{N}_t} \frac{\pi^k(m_t, n_t)}{\sum_{m_t \in \mathcal{N}_t} \pi^k(m_t, n_t)} \cdot \xi_t(m_t),$$

 or find the barycenters by applying the steepest descent method, or the limited memory BFGS method.

Step 3 – Improve the probabilities

Setting $\pi \leftarrow \pi^k$ and $q \leftarrow q^{k+1}$ and calculate all conditional probabilities $\pi^{k+1}(\cdot, \cdot | m, n) = \pi^*(\cdot, \cdot | m, n)$, the unconditional transport probabilities $\pi^{k+1}(\cdot, \cdot)$ and the distance $\mathrm{dl}_r^{k+1} = \mathrm{dl}_r\left(\mathbb{P}, \tilde{\mathbb{P}}\right)$.

Step 4

Set $k \leftarrow k + 1$ and continue with Step 2 if

$$\mathsf{dl}_r^{k+1} < \mathsf{dl}_r^k - \varepsilon,$$

where $\varepsilon > 0$ is the desired improvement in each cycle k. Otherwise, set $\tilde{\xi}^* \leftarrow \tilde{\xi}^k$, define the measure

$$\tilde{P}^{k+1} := \sum_{j} \delta_{\tilde{\xi}_{j}^{k+1}} \cdot \sum_{i} \pi^{k+1} \left(i, j \right),$$

for which $\mathrm{dl}_r\left(\mathbb{P},\mathbb{P}^{k+1}\right)=\mathrm{dl}_r^{k+1}$ and stop.

In case of the quadratic nested distance (r = 2) and the Euclidean distance the choice $\varepsilon = 0$ is possible.

Stages	4	5	5	6	7	7
Nodes of the initial tree		309	188	1,365	1,093	2,426
Nodes of the approx. tree	15	15	31	63	127	127
Time/ sec.		10	4	160	157	1,044

Reducing the nested distance by making the tree bushier.

 $Opt(\mathbb{P}): \quad v^*(\mathbb{P}) = \min\{\mathcal{R}_{\mathbb{P}}[H(x,\xi)] : x \lhd \mathfrak{F}; \mathbb{P} \sim (\Omega, \mathfrak{F}, P, \xi)\}$

Lemma. Suppose that the functional $P \mapsto \mathcal{R}_P(\cdot)$ is compound concave (i.e. the mapping $P \mapsto \mathcal{R}_P(Y)$ is concave for all random variables Y for which \mathcal{R} is defined. Then the mapping $P \mapsto v^*(P)$ is also concave. Consequently, if one dissects the probability measure

$$P = \sum_{i=1}^{k} P(\omega_i) \delta_{\omega_i}.$$
 (12)

then

$$\sum_{i=1}^k p_i v^*(P_i) \leq v^*(P).$$

Refinement Chains

