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Matching Algorithms with advices, and multi-agent problems

The simplest version of online matching problem is the following [24, 35]. Given a bipartite graph G =
(U,V,E), where U and 7V are two distincts sets of vertices (the supply and the demand) and £ C U x V is a
set of edges, the objective is to construct a matching 9/, i.e., a subset of E such that any vertex u € U orv € V
belongs to at most one edge of M [19, 43, 30, 4]. The “quality” of a matching is simply its cardinality ||,
and we shall denote (with a slight abuse of notations as it depends on G) by M x C ‘E any optimal matching
with maximal cardinality.

In the online variant of the problem [24], the matching M is constructed sequentially. Although the set
U is known at the beginning, elements of 9/ unveil one at a time: first vi € ¥ is observed, along with
E1 :={(u,v1) € E}. A decision-maker/platform/algorithm decides to pair v; with some u; so that (u;,vy) € ‘E;;
this forms the matching M;. Then v, € ¥ is observed, along with %, := {(u,v2) € E£}. The decision-
maker/platform/algorithm decides, if possible, to pair v, with some u, so that e; := (up,v2) € ‘£, and M, =
M, U{ep} is still a matching. This process is repeated until all elements of 9 are observed (and potentially
paired) and this construct an online matching M. The performance of an online algorithm [27, 5, 25] is called
the competitive ratio [16] (for this unknown graph G), which is simply |M|/|M*|. The overall objective is
then to control the minimum of this ratio over all possible graphs G (or over an admissible class of graphs).

To give an idea of typical results, it is quite possible to show that any deterministic algorithm cannot achieve a
worst-case competitive ratio smaller than 1/2, and so does the greedy one (that picks at each iteration uniformly
at random an admissible edge). On the other hand, a slight variation, that selects first a ranking over U at
random, and then picks the admissible vertex u; € U with the smallest rank achieves a competitive ratio of
11— é, which is optimal in the generic adversarial case [24, 13, 2]. Those competitive ratios can be improved
with additional assumptions: if the vertex arrival order is chosen at random and/or the underlying bipartite
graph is itself chosen at random [20, 32], etc.

The problem of online matching has many variants, and generalizations (or simplifications actually, such as
prophet inequalities [31, 12], that can also be studied in the fixed order, random order, with iid random variables
or not, etc. [34, 22, 8, 15]) and they allfall in the category of “online computations” [5]; maybe one of the most
famous one is called the k-server problems [33]. There are strong connections with stochastic multi-armed
bandits [10, 26] (yet they have only been very scarcely investigated in the literature) where the objective is to
sequentially learn which action is optimal in a given set. Unlike these online learning problems (bandits and
reinforcement), the target of online algorithms problem rather consists in finding out when to use this action.

Typical proof techniques rely on reductions to some optimization problems solved sequentially (by con-
structing a “factor revealing” program [23, 32, 2], by controlling simultaneously the primal and its dual [11] or
by trying to track the optimal current algorithms [5]) and/or on careful - sometimes lengthy - computations.

The standard online matching problem described above is interesting but quite limited; few of the motivating
examples can be appropriately modelled by it. This explains why many variants have already been investigating.
Probably one of the more general one (called “adwords” as it was used to model this specific problem) consists
in assuming that vertices u € U have a budget B, and edges (u,v) a cost b,,. Then the global objective
consists in sequentially constructing a subset of edges M C ‘E that maximizes Y (uv)ear bu,y such that the budget
constraints are satisfied, i.e., ¥, v)ear buy < Bu. As before, a greedy algorithm would have a competitive ratio
of only 1/2, contrary to variants (with similar proof techniques), while adapted version of rankings [36] still
get a ratio of 1 — é

Oracle-Guided Algorithms There is an interesting reason to get better, or even case-dependent, competitive
ratios. The global idea is that algorithms might have, sometimes, good a-priori about the solution of a problem
[1, 14]. For instance, finding a word in a dictionary of size n takes log,(n) comparison in the worst-case;
yet in practice, an agent knows the “global” position of a word and used it to lower the number of search (for
instance, it’s clear that baobab is at the beginning while yoghourt at the end). This idea has been integrated to the
standard primal/dual approach, where the algorithm gets some advices from some “Oracle”, to get improved
ratios [37, 21, 28]. However, those advices are usually exogenous, and not constructed or learned from the
data. Learning the Oracle, using online learning approaches for instance and then plugging it into online
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algorithms should provide improve competitive ratios. Finally, let us mention that state of the art usually
assume that predictions are perfect, and an algorithm should then be “consistent’,” or very bad and then the
criteria to achieve is the “robustness”. The dichotomy between those two objectives is quite arbitrary and not
really fulfilling [42]. We will aim at defining intermediate and more relevant regimes.

Oracle guided Speed Scaling The first simple setup that we are investigating to combine Oracle guided
algorithms and temporal dependencies is called “speed scaling” (a sub-task of scheduling). In this setting
n tasks arrive sequentially at time T; and takes ¢; computation units to be completer. But there is only one
machine (for the moment) whose time can be split to solve those tasks. Denote by f; the final completion time
of task i. The objective is then to minimize Y7 ;[f; — T:]. When ¢; is known in advance ”Shortest Remaining
Processing Time” is optimal [40]. Assume now that ¢; is unknown but an Oracle gives a prediction ¢;; very
positive recent results prove that the variant of SRPT (run with respect to ¢; instead of ¢;) can be combined to
the naive Round Robin algorithm to improve competitive ratios if predictions are “good enough”. Although we
wonder whether it should not be actually combined with another algorithm, agnostic to completion time called
”Shortest Elapsed Time First ” [39], it will be more interesting to construct the Oracle while the algorithm
is running. For instance, assume that the task i is parameterized by i.i.d. feature vector X; € R and that the
computation time follows a linear model ¢; = X;' B +¢;. Then the Oracle will be the output of a learning
algorithm of P, based on delayed-feedback bandit techniques (tasks must be completed before getting relevant
information).

Multi-agents Algorithms. A variant of the matching problem is to assume that vertices u € U are agent that
learn themselves, in a decentralized way, some strategies. A typical approach would be to assume that they
follow independently some online learning algorithm (as data are gathered and treated on the fly), a.k.a, bandits
algorithms (or online convex optimization) [9]. The bandit literature is now almost exhaustive, with thousands
of variants of the basic model introduced, so one might think that some off-the-shelf algorithm could be directly
used. This is actually incorrect because there are not just one agent that is learning, but several of them. Hence
the problem falls into the realm of multi-player multi-armed bandit, which recently gains a lot of interest
[6, 29]. The motivating reason is the emergence of 5G networks, where users will be able to choose bandwidths
to transmit data (they are of different quality, and shall be understood as a set of arms; the bandwidth is the
reward of an arm). If two users select at the same time the same bandwidth, they interfere, lost packets and
their rewards is set to O instead. The objective is then to devise decentralized protocol that achieves (hopefully)
the same asymptotic performances than the centralized one. This setting is quite interesting as it incorporates
several agents are learning at the same time, and that decisions of one of them impact the others. We started
investigating multi-agents online problems beyond the bandit realm, into online queuing system [17, 18, 41].
We were able to devise new protocols, leveraging ideas coming from multi-player multi-armed bandits (to
achieve the same results as in the totally centralized case) combined to standard offline matching algorithms.
This approach is therefore quite promising for more general multi-agent online computations problems.

Interactions between agents can be more subtle than mere interference; for instance, in strategic experimen-
tations [3, 38] agents observe the behavior/decisions/algorithms of the other and they can use this as extra (and
free) information. This yielded the question of finding not only decentralized learning algorithms, but more im-
portantly, equilibrium of algorithms (with typical questions such as: does observing other agents exploration
policy increase, or decrease, the global exploration over all agents ?). We successfully answered this question
in a restricted setting [7] using repeated game ideas (Grim Trigger strategies to be precise), and this paves the
way to exciting new challenges.

Multi-Agent Prophet Inequalities and Other Online Problems Introducing multi-agent decision in classi-
cal prophet inequalities settings would be quite interesting. For instance, similarly to the multi-armed bandit
motivations, agents take decisions independently (their stopping times) and get as reward the random variable
when they stopped, on the condition that there are only one agent stopping at that time. Otherwise, there is a
collision and the reward shrinks to 0.

The similarity to multi-player bandit [6] or queuing systems [41] we investigated will be very valuable.
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