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Electrification, électrification renouvelable

Illustrations @theoremlinger

2/23



7

Q
o)
e
[}
>
-
<)
=
o
1S
c
2
L
©
O
iz
'S
e
Q
9
@
=
2
L
®
O
“rm
S
L
Q
9
w

J98uljwiai08y1p Ssuollealsni||

2/23



Electrification, électrification renouvelable

Illustrations @theoremlinger
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Une situation paradoxale
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Vendre et stocker au bon moment !
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Mais au fait, a qui vendre ? Et qui vend ?
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Prix spot francais de I'électricité de 2016 a 2023
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Prévoir a partir de variables descriptives

Jour et heure ‘ Prix Prix J-1  Prix J-7  Conso. Jour

11/01/16 OPM | 21.95 15.58 13.78 58800  Lundi
11/01/16 1PM | 20.04 19.05 13.44 57600  Lundi

12/01/16 OPM | 21.51 21.95 25.03 61600 Mardi
12/01/16 1PM | 19.81 20.04 24.42 59800 Mardi

18/01/16 OPM | 38.14 37.86 21.95 70400  Lundi
18/01/16 1PM | 35.66 34.60 20.04 69500  Lundi
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Prévoir a partir de variables descriptives

Jour et heure ‘ Prix Prix J-1  Prix J-7  Conso. Jour

11/01/16 OPM 21.95 15.58 13.78 58800 Lundi

o v €R
.XteRd

Ex. : y1 = 21.95 et x; = (01,0PM, 15.58,13.78, 58800, Lundi)

—)yt:f(Xt)+Et
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Utiliser le passé pour évaluer les modeles

Jour et heure ‘ Prix  Prix J-1 Prix J-7 Conso.  Jour
— 11/01/16 OPM | 21.95 1558  13.78 58800 Lundi
— 11/01/16 1PM | 20.04 19.05 13.44 57600 Lundi
— 12/01/16 0OPM | 21.51 21.95 25.03 61600 Mardi
— 12/01/16 1PM | 19.81 20.04 24.42 59800 Mardi
— 18/01/16 OPM | 38.14 3786  21.95 70400 Lundi
— 18/01/16 1PM | 35.66  34.60 20.04 69500 Lundi
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Utiliser le passé pour évaluer les modeles

Jour et heure ‘Prix Prix J-1 Prix J-7 Conso.  Jour

4

11/01/160PM | ? 1558  13.78 58800 Lundi
11/01/16 IPM | ?  19.05  13.44 57600 Lundi

1

12/01/16 OPM 7 21.95 25.03 61600 Mardi
12/01/16 1PM ? 20.04 24.42 59800 Mardi

U

4

18/01/16 OPM 7 37.86 21.95 70400 Lundi
18/01/16 1PM 7 34.60 20.04 69500 Lundi

d
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Evaluer les prédictions d’'un modele

Prix prédit \ Prix predit
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Evaluer les fonctions f

Pour chaque modele ou fonction f, on calcule I'erreur moyenne empirique :

N

1 :

erreur empirique (f) = m E erreur de f sur I'exemple i.
i=1
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Evaluer les fonctions f

Pour chaque modele ou fonction f, on calcule I'erreur moyenne empirique :

erreur empirique (

= \

En pratique, on restreint notre recherche a f € F.
Modele linéaire

F = {f telles que f(x) =+ 87 x,
avec (7,0) € R x ]Rd}
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Trouver la meilleure fonction f parmi un groupe de candidates

Modele linéaire

F = {f telles que f(x) =+ 87 x,
avec (7,0) € R x ]Rd}

On cherche donc les meilleures valeurs de 3 et v pour que f donne des
prédictions qui ressemblent au mieux a nos valeurs a prédire.
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< Réseau de neurones —> F plus riche
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Qu’est-ce que cela donne sur les prix de I'électricité ?

12001 — Observed price

§ ----- Predicted price i
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— Les meilleurs modeles de prévision de prix font 10% d'erreur relative
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Et la fiabilité dans tout ca ?
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Prévoir avec confiance : région prédictive

Nouvel objectif :

— Observed price

””” Predicted price

Predicted interval

Quantifier l'incertitude prédictive avec :
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Formalisation de la quantification d’incertitude prédictive

L'utilisateur choisit un niveau de confiance 1 — «.
Par exemple 0.9 (autrement dit 90%) correspond a o = 0.1.
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Formalisation de la quantification d’incertitude prédictive

L'utilisateur choisit un niveau de confiance 1 — «.
Par exemple 0.9 (autrement dit 90%) correspond a o = 0.1.

Notons C,,(x) une région prédictive de niveau 1 — « en un point x.

Celle-ci doit vérifier la propriété suivante :

[IP{YGC“ (X)}Zl(\,]

tout en étant la plus petite possible.
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Prédictions conformes par partition!'>:3 : phase d’entrainement

» Apprendre f

17, Algorithmic Learning in a Random World
22, Inductive Confidence Machines for Regression, ECML
3?, Distribution-Free Predictive Inference for Regression, JRSS B
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Prédictions conformes par partition!'?>3 : phase de calibration
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Prédictions conformes par partition''?:3 : phase de prédiction
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Prédictions conformes par partition''?:3 : phase de prédiction

il . » Prédire avec 1
_?:~\‘\\\‘\ o.. ° o0 . o..o X o - ‘ ~ ConstrUIre C(X)
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Revenons-en aux prix de I'électricité

Spot price (€/MWh)
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Des idées (biaisées) d’approfondissement

e Phénomenes temporels (cycles, tendances, dépendence aux jours d'avant ...)
mettent en défaut I'hypothese des prédictions conformes.
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P(Y eC_ =x)>1—«

Obtention de garanties plus conditionnelles.

e Que se passe-t-il en présence de données manquantes 7 Le modele de
prévision de consommation n'a pas pu prédire (panne de courant par ex.)
mais nous voulons quand méme prédire le prix. Quantification
d’incertitudes en présence de données manquantes.
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Messages a retenir

e Les mathématiques peuvent permettre de faire des prédictions
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Transversalité et universalité des mathématiques
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