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Parcours jusqu’ici

• ENSTA Paris (2016-2020)

• M1 Mathématiques Appliquées (2017-2018)

• Année de césure : stages EDF R&D et GE Healthcare

• M2 Data Sciences

• Thèse en statistiques au Centre de Mathématiques Appliquées de l’Ecole

polytechnique, à l’Inria et en CIFRE avec EDF R&D (2024)

• Post-doctorante à UC Berkeley (2024-2025)

• Post-doctorante au Laboratoire de Mathématiques d’Orsay depuis cette année
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Électrification, électrification renouvelable
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Une situation paradoxale
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Vendre et stocker au bon moment !
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Mais au fait, à qui vendre ? Et qui vend ?
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Prix spot français de l’électricité de 2016 à 2023
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Objectif de prévision

20
19

-0
1-
21

20
19

-0
1-
22

20
19

-0
1-
23

20
19

-0
1-
24

20
19

-0
1-
25

20
19

-0
1-
26

60

80

100

120

S
p
ot

p
ri

ce
(€

/M
W

h
)

Observed price

Predicted price

?

7 / 23



Prévoir à partir de variables descriptives

Jour et heure Prix Prix J-1 Prix J-7 Conso. Jour

11/01/16 0PM 21.95 15.58 13.78 58800 Lundi

11/01/16 1PM 20.04 19.05 13.44 57600 Lundi
...

...
...

...
...

...

12/01/16 0PM 21.51 21.95 25.03 61600 Mardi

12/01/16 1PM 19.81 20.04 24.42 59800 Mardi
...

...
...

...
...

...

18/01/16 0PM 38.14 37.86 21.95 70400 Lundi

18/01/16 1PM 35.66 34.60 20.04 69500 Lundi
...

...
...

...
...

...
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Utiliser le passé pour évaluer les modèles

Jour et heure Prix Prix J-1 Prix J-7 Conso. Jour
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Évaluer les prédictions d’un modèle

Prix prédit

11/01/2016

Prix prédit

31/12/2019

erreur prix réel prix prédit
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Évaluer les fonctions f

Pour chaque modèle ou fonction f , on calcule l’erreur moyenne empirique :

erreur empirique (f ) =
1

N

N∑
i=1

erreur de f sur l’exemple i.

En pratique, on restreint notre recherche à f ∈ F .

Modèle linéaire

F := { f telles que f (x) = γ + βT x ,

avec (γ, β) ∈ R×Rd
}
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Évaluer les fonctions f
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Trouver la meilleure fonction f parmi un groupe de candidates

Modèle linéaire

F := { f telles que f (x) = γ + βT x ,

avec (γ, β) ∈ R×Rd
}

On cherche donc les meilleures valeurs de β et γ pour que f donne des

prédictions qui ressemblent au mieux à nos valeurs à prédire.

⇒ On cherche les valeurs de β et γ telles que f donne des prédictions de plus

petite erreur moyenne empirique possible.

f ∗ = argmin
f ∈F

{erreur empirique (f )}

↪→ Réseau de neurones −→ F plus riche
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⇒ On cherche les valeurs de β et γ telles que f donne des prédictions de plus
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F := { f telles que f (x) = γ + βT x ,

avec (γ, β) ∈ R×Rd
}

On cherche donc les meilleures valeurs de β et γ pour que f donne des
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⇒ On cherche les valeurs de β et γ telles que f donne des prédictions de plus
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Qu’est-ce que cela donne sur les prix de l’électricité ?
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↪→ Les meilleurs modèles de prévision de prix font 10% d’erreur relative
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Et la fiabilité dans tout ça ?
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Prévoir avec confiance : région prédictive

Nouvel objectif :
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Quantifier l’incertitude prédictive avec :

• Des méthodes théoriquement valides

• Peu d’hypothèses sur la distribution des données

• Des garanties agnostiques au modèle de prédiction

⇝ Approche post-hoc (i.e. s’encapsuler en bout de châıne autour de

n’importe quel algorithme opérationnel pré-existant)
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⇝ Approche post-hoc (i.e. s’encapsuler en bout de châıne autour de
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• Des méthodes théoriquement valides
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Nouvel objectif :

20
19
-0
1-
21

20
19
-0
1-
22

20
19
-0
1-
23

20
19
-0
1-
24

20
19
-0
1-
25

20
19
-0
1-
26

50

75

100

125

S
p
ot

p
ri
ce

(€
/M

W
h
)

Observed price

Predicted price

Predicted interval

Quantifier l’incertitude prédictive avec :
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Formalisation de la quantification d’incertitude prédictive

L’utilisateur choisit un niveau de confiance 1− α.

Par exemple 0.9 (autrement dit 90%) correspond à α = 0.1.

Notons Cα(x) une région prédictive de niveau 1− α en un point x .

Celle-ci doit vérifier la propriété suivante :

P {Y ∈ Cα (X )} ≥ 1− α,

tout en étant la plus petite possible.
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Prédictions conformes par partition1,2,3 : phase d’entrâınement

0 2 4
X

−2

0

2

Y

1

▶ Apprendre f

1?, Algorithmic Learning in a Random World
2?, Inductive Confidence Machines for Regression, ECML
3?, Distribution-Free Predictive Inference for Regression, JRSS B
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Prédictions conformes par partition1,2,3 : phase de calibration

0 2 4
X
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0

2

Y

1

▶ Prédire avec f

▶ Obtenir les erreurs

▶ Trouver le quantile de

niveau 0.9 de ces erreurs

(la 0.9× n-ème plus grande

erreur), notée q0.9 (erreurs)

1?, Algorithmic Learning in a Random World
2?, Inductive Confidence Machines for Regression, ECML
3?, Distribution-Free Predictive Inference for Regression, JRSS B
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Prédictions conformes par partition1,2,3 : phase de prédiction

0 2 4
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▶ Prédire avec f

▶ Construire C(x):
[f (x)− q0.9 (erreurs);

f (x) + q0.9 (erreurs)]

1?, Algorithmic Learning in a Random World
2?, Inductive Confidence Machines for Regression, ECML
3?, Distribution-Free Predictive Inference for Regression, JRSS B
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Revenons-en aux prix de l’électricité
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Résumons
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Des idées (biaisées) d’approfondissement

• Phénomènes temporels (cycles, tendances, dépendence aux jours d’avant ...)

mettent en défaut l’hypothèse des prédictions conformes.

Extension de la

méthode aux séries temporelles.

• La garantie n’est qu’en moyenne. La méthode fait plus d’erreurs sur les

week-ends que la semaine par exemple.

Obtention de garanties plus

conditionnelles.

• Que se passe-t-il en présence de données manquantes ? Le modèle de

prévision de consommation n’a pas pu prédire (panne de courant par ex.)

mais nous voulons quand même prédire le prix.

Quantification

d’incertitudes en présence de données manquantes.
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méthode aux séries temporelles.

• La garantie n’est qu’en moyenne. La méthode fait plus d’erreurs sur les
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méthode aux séries temporelles.

• La garantie n’est qu’en moyenne. La méthode fait plus d’erreurs sur les
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Messages à retenir

• Les mathématiques peuvent permettre de faire des prédictions

• Applicable pour de nombreux problèmes réels

• Ne jamais interpréter des prédictions ponctuelles

• Offrir des garanties aux citoyens

• Transversalité et universalité des mathématiques
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23 / 23



Messages à retenir
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23 / 23



Messages à retenir
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