
Chapter 2

Examples, Benjamini–Schramm limits

In this chapter, we give the first examples of convergences of deterministic and random

pointed graphs. The choice of the origin vertex is essential, as convergence is defined with

respect to the local structure around this base point. A fundamental idea, introduced by

Benjamini and Schramm, is to consider a finite graph rooted at a vertex chosen uniformly

at random. This gives rise to a random rooted graph that encodes the local geometry

of the original graph from the perspective of a typical vertex. The distributional limits

of such random rooted graphs, known as Benjamini–Schramm limits, provide a rigorous

framework for analyzing local properties of large sparse graphs, see Part III.
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2.1 Deterministic limits

2.1.1 First examples

We illustrate by pictures a few convergences of deterministic random graphs:
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Figure 2.1: A few examples of convergence of deterministic pointed graphs for

the local topology. In particular, the last two examples are seen as pointed graphs

and not plane trees. The last limit graph is called the canopy tree, it has a unique

infinite branch.
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To the preceding examples, one can add the 3-dimensional torus equipped with the

standard edges (the graph pointed at any vertex is transitive) which converges towards

the 3-dimensional Euclidean lattice as the side length tends to +1.

2.1.2 Large girth graphs

The last two examples illustrated the fact that the location of the based point may dra-

matically change the limiting graph. As a first challenge to the reader we propose to think

about the following exercise: Construct a sequence of 3-regular graphs g= so that for any

d= 2 V(g=) we have the local convergence (g=, d=) ! (T3 , d) as = ! 1, where T3 is the

infinite 3-regular tree. Equivalently, this boils down to constructing a 3-regular graph

which is locally tree-like around each vertex, that is, so that the length of the smallest

non-trivial cycle, the so-called girth of the graph, tends to infinity. This is however a very

di�cult exercise, and the first explicit construction of such graphs (for 3 = 4 and along

some particular values of =) was famously provided by Margulis [56]. In fact, nowadays

the easiest way to prove existence of such graphs is via the probabilistic method.

Theorem 5 (Construction of large girth graphs)

For each prime number ? � 3, consider the Cayley graph g? of the subgroup of

SL2(Z/?Z) with generators

� =

 
1 2

0 1

!
, ��1 =

 
1 �2

0 1

!
, ⌫ =

 
1 0

2 1

!
, ⌫�1 =

 
1 0

�2 1

!
.

We denote by Girth(g?) the girth of g? , i.e, the length of the shortest non-trivial cycle

in g? . There exist constants 2 < ⇠ 2 (0,1) such that

2 · log(?)  Girth(g?)  ⇠ · log(?) for all su�ciently large ?.

In particular, as ? ! 1, we have g? ! T4 for the local topology on G
•
(these graphs

are transitive).

Proof. First, let us prove a logarithmic upper bound on the girth of g? . In fact, for any

4-regular graph g with = vertices, we have

Girth(g)  2 ·
✓
log3

✓
= + 1

2

◆
+ 1

◆
. (2.1)

Indeed, fix d 2 g, and set A = dGirth(g)/2e � 1. Since 2A < Girth(g), there is a one-to-

one correspondence between the vertices of [(g, d)]A and non-backtracking paths starting
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from d and with length at most A . Indeed, for each vertex G 2 [(g, d)]A there exists a non-

backtracking path from d to G which has length at most A , and any two non-backtracking

paths starting from d and with length at most A must lead to di↵erent vertices of ((g, d)]A ,
for otherwise there would be a non-trivial cycle in g with length at most 2A . In particular,

the pointed graph [(g, d)]A is isomorphic to [(T4, d)]A , and we have

#[(g, d)]A = 1 + 4 + 4 · 3 + . . . + 4 · 3A�1 = 1 + 2 · (3A � 1) = 2 · 3A � 1.

Since on the other hand we have #( [)g, d)]A  =, we obtain A  log3((= + 1)/2), which

yields (2.1). Specialising (2.1) to g? and using the crude upper bound #V(g?)  ?4, we

obtain

Girth(g?)  2 ·
✓
log3

✓
?4 + 1

2

◆
+ 1

◆
,

which shows that Girth(g?) is at most of order log(?) as ? ! 1.

Now, let us provide a matching lower bound. To this end, observe that the girth of g? is

at least ^ (?), the smallest integer : � 1 for which there exists "1, . . . ,": 2
�
�,��1,⌫,⌫�1 

with "8+1 < "�1
8 for all 8 2 {1, . . . ,: � 1} such that "1 . . .": = � . This is because a

non-backtracking cycle of length : in g? corresponds to an irreducible word of length :

over �,��1,⌫,⌫�1 which is trivial. Therefore, it su�ces to prove that ^ (?) is at least

of order log(?) as ? ! 1. Let us denote by c? : SL2(Z) ! SL2(Z/?Z) the group

homomorphism which reduces coe�cients modulo ?. We will denote by A,A�1,B,B�1

the same matrices as �,��1,⌫,⌫�1 but in SL2(Z). To make our lives easier, we will take

for granted that there is no non-trivial irreducible word over A,A�1,B,B�1. This means

that for any M1, . . . ,M: 2
�
A,A�1,B,B�1 with M8+1 < M

�1
8 for all 8 2 {1, . . . ,: � 1},

we have M1 . . .M: < � (that is, the group generated by A and B in SL2(Z) is a free

group). This is a consequence of the so-called Ping-Pong lemma, we refer the interested

reader to the associated wikipedia page, or directly to [56] and references therein. Now,

by the definition of ^ (?), there exists "1, . . . ,"^ (?) 2
�
�,��1,⌫,⌫�1 with "8+1 < "�1

8

for all 8 2 {1, . . . ,^ (?) � 1} such that "1 . . ."^ (?) = � . For each 8 2 {1, . . . ,^ (?)}, let

M8 be the unique element of
�
A,A�1,B,B�1 such that c? (M8) = "8 (we use here that

? � 3). We get that M8+1 < M
�1
8 for all 8 2 {1, . . . ,^ (?) � 1}, hence M1 . . .M^ (?) < � . Since

c? (M1 . . .M^ (?)) = "1 . . ."^ (?) = � , we deduce that one of the coe�cients of M1 . . .M^ (?)
is a non-zero multiple of ?. In particular, we obtain kM1 . . .M^ (?) k � ?, where k · k is the

Frobenius norm: �����
 
0 1

2 3

!����� =
⇣
02 + 12 + 22 + 32

⌘1/2
� max( |0 |, |1 |, |2 |, |3 |).

Since k · k is submultiplicative (which can be checked using Cauchy–Schwarz), we have on

the other hand kM1 . . .M^ (?) k  ⇠^ (?), where ⇠ = max
�
k�k,

����1�� , k⌫k, ��⌫�1��� > 1, and

we conclude that ^ (?) � log⇠ (?), as desired.
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Figure 2.2: The group generated by �±1,⌫±1
in SL2(Z/?Z for ? = 3, 5 and 7.

Finally, now that we know that Girth(g?) ! 1 as ? ! 1, the local convergence of g?
to T4 is immediate: for each A � 0, we have 2A < Girth(g?) for all su�ciently large ?, and

we have seen in the proof of the upper bound on Girth(g?) that as soon as this holds the

restrictions [(g?, d)]A and [(T4, d)]A are isomorphic. É

Remark 1. The above theorem construct large 4-regular graphs of size =  ?4 with girth

at least c log ?. A trivial upper bound for the maximal girth of a 3-regular graph of size

= is (2 + > (1)) log3�1(=) and it is still open as of today to see whether this trivial upper

bound is asymptotically optimal.

2.2 Benjamini–Schramm limits

Let us now turn attention to convergence of random pointed graphs. A first and actually

already non-trivial way to get a random pointed graph is to start from a deterministic

finite graph g= and sample its pointed vertex d= 2 V(g=) uniformly at random. This

procedure is sometimes called taking its Benjamini–Schramm version in reference to [20].

2.2.1 Randomization of deterministic graphs

Definition 5. If g is a finite graph, its uniformly pointed version is the random pointed

graph U•(g) whose law is 1
#V(g)

Õ
G2V(g) X (g,G) or equivalently, for any measurable function

� : G• ! R we have

E[� (U•(g))] = 1

#V(g)
’

G2V(g)
� (g, G).

Such graphs will be called uniformly pointed in the next chapter. Let us emphasize

once, that U•(g) is a random equivalence class of pointed graph, and that although we use

the labeling of the vertices of g in the definition, it is easy to check that actually U•(g)
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only depend on the equivalence class of g as an unpointed graph. These identifications

will be implicit in most of the lecture notes. Let us go over the three examples of graphs

of Figure 2.1 and describe the random infinite pointed graphs we obtained this way.
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Figure 2.3: Randomization of the pointed graphs presented in Figure 2.1.

• In the first case, the obvious intuition is that if we sample the pointed vertex uni-

formly at random in a discrete segment with = + 1 vertices, then it will fall “in the

bulk” with large probability. More precisely, for A � 0, the pointed vertex will be at

distance larger than or equal to A from the two extremities with probability

= + 1 � 2A

= + 1
,

as long as 2A  = + 1. Obviously, for A fixed the above probability tends to 1 as

= ! 1 and we deduce that [U•(g=)]A is equal to ball of radius A around 0 in the

bi-infinite line graph E1 with a probability tending to 1. This entails the convergence

in probability of the random pointed graph towards the bi-infinite discrete line (the

limit is thus di↵erent from the deterministic pointing at one extremity).

• The second case is similar, the probability that the pointed vertex is at distance at

least A from the boundary of the grid is equal to

(= + 1)2 � 4= � 4(= � 2)... � 4(= � 2(A � 1))
(= + 1)2
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and tends to 1 as = ! 1 for fixed A . In such case [U•(g=)]A is the A -neighborhood

of the origin in the infinite grid. It follows that U•(g=) converges in probability

towards the 2-dimensional grid E2.

• The last case is our first encounter of a random limit. When pointing the three-

regular tree truncated at height =, due to exponential growth, the boundary e↵ects

are not negligible anymore. In particular, the probability that a uniform random

vertex of g= lands at height = � ⌘ � 1 is equal to

3 · 2=�⌘�1
1 + 3(1 + 2 + ... + 2=�1) ����!

=!1
2�⌘�1.

In this case, (and when = � 2A), the A -neighborhood of this vertex coincides with

the neighborhood of a vertex at level ⌘ in the canopy tree (level 0 being the highest

level). It follows that, if we consider the random rooted graph (Can, d) obtained

from the canopy tree by rooting it at a vertex of level ⌘ with probability 2�⌘�1, then

we have the following convergence in distribution for the local topology:

U•(g=)
(3)����!

=!1
(Can, d).

2.2.2 Benjamini–Schramm convergences

Notice that we can consider U•(⌧=) even if the underlying graph ⌧= is itself random1.

That is, we first sample the graph ⌧= and then consider its uniformly pointed version

U•(⌧=), which is a random pointed finite graph. Let us apply it to this example:

In the first case, when pointing those graphs uniformly at random, the point will fall

with probability roughly 1/2 in the “line” part of the graph, and with the complement

probability in the “grid” part. By the above discussion, when the point falls in these parts

it does so far enough from the boundary. In particular we get a random limit:

U•(g=)
(3)����!

=!1
1

2
(XE1 + XE2).

We obtain the same limit for the uniformly pointed version of the random graph ⌧=.

Definition 6 (Benjamini–Schramm convergence). A sequence of unpointed random finite

graphs (⌧= : = � 1) is said to converge in the Benjamini–Schramm sense towards ⌧•
1 =

(⌧1, d1) if we have the following convergence in distribution for dloc:

U•(⌧=)
(3)����!

=!1
⌧•
1.

1Although it is hard to make sense of a random infinite unpointed graph ⌧1, there is no problem in

the finite case.
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Figure 2.4: The first sequence g= is a deterministic graph made of a discrete line

and a discrete square of size roughly =. The second sequence is a random graph ⌧=

made either of the discrete line of size = or the discrete square of size = with equal

probability. Their uniformly pointed versions both converge to the same random

pointed graph.

The Benjamini–Schramm limit of a sequence of random graphs enables us to capture

the “average” local geometry of the random graphs ⌧= as = ! 1. Establishing the

Benjamini–Schramm convergence of some natural examples of random graphs is usually a

highly non-trivial task and this will occupy us in Chapters 3, 4, 5 and 6 for various models

of random graphs. Down-to-earth, a sequence of random finite graphs converges in the

Benjamini–Schramm sense towards the random pointed graph ⌧•
1 if for any bounded

continuous q : G• ! R+, we have

E
266664

1

#V(⌧=)
’

G2V(⌧=)
q (⌧=, G)

377775
�!
=!1

E[q (⌧•
1)] . (2.2)

In many examples, this convergence is actually stronger:

Definition 7 (quenched Benjamini–Schramm). A sequence (⌧=)=�0 of (unpointed) random

finite graphs is said to converge in the Benjamini–Schramm quenched sense towards ⌧•
1

if any of the following equivalent conditions are satisfied:

(i) For any bounded continuous q,k : G• ! R+ we have

E
266664

1

(#V(⌧=))2
’

G,~2V(⌧=)
q (⌧=, G)k (⌧=,~)

377775
����!
=!1

E[q (⌧•
1)] · E[k (⌧•

1)] .

(ii) For any bounded continuous q : G• ! R+ we have

E [q (U•(⌧=)) | ⌧=] =
1

#V(⌧=)
’

G2V(⌧=)
q (⌧=, G)

(P)����!
=!1

E[q (⌧•
1)] .
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Because of the second item, this convergence is sometimes called “local convergence in

probability”, but we prefer the former terminology to avoid confusion.

Proof of the equivalence. We introduce the shorthand notation

/q (=) :=
1

#V(⌧=)
’

G2V(⌧=)
q (⌧=, G),

where /q (=) is a random variable depending on the unpointed graph ⌧= only. Assume

(8) and specialize it to k = 1 and k = q to obtain that E[/q (=)] ! E[q (⌧•
1)] and

E[(/q (=))2] ! (E[q (⌧•
1)])2. The convergence in probability of the bounded variable /=

then follows from Chebytchev’s inequality (a.k.a. second moment method). Assuming

(88), then /q (=) and /k (=) converge in probability, so does their product. An application

of the dominated convergence theorem implies (8). É

Clearly a sequence of deterministic graphs (g=)=�0 which converges in the Benjamini–

Schramm sense also converges in the quenched sense. The di↵erence only pops up for

random graphs (⌧=)=�0. To understand the di↵erences between the two notions, let us

come back to the two examples considered in Figure 2.4: in the first case (the deterministic

sequence of graphs on the left of the figure), one can check that the Benjamini–Schramm

quenched convergence holds. However, it is not the case for the second case (right part

of the figure) where the geometry of the graph ⌧= is itself random. We shall see later a

stronger property, namely the fact that the limit (⌧1, d1) is ergodic.

Exercise 10. Compute, if they exist, the local limits of the uniformly pointed versions

of the following graphs, where the size of the gray arrows tends to infinity. Show that

quenched convergences hold (although in the fifth case, the limit is not ergodic):

same number of points
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Exercise 11 (From [57]). Consider Z2 and color each site (?,@) 2 Z2 in black if ? and @

are coprime. Consider the random coloring obtained from the box [[�=,=]]2 by sampling

the origin uniformly at random. Show that the random coloring converges to a random

coloring of Z2 (specify the topology).

Bibliographical notes. The concept of Benjamini–Schramm convergence of a sequence of

(random) graphs has been popularized by [20] although it had precursors such as [7] in the

case of random trees. The quenched Benjamini–Schramm convergence is e.g. considered

in [27]. See [66, Chapter 2] for more references. Theorem 5 is due to Margulis [56].
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