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Dealing with random objectives N

Using a random PDE, means our objective becomes implicitly random:

min 7(5(2))(w) + p(2)

2€Zaq
2 € Z,q decision variables, designs, controls, etc. (deterministic)
z + S(z) solution of the random PDE. (stochastic)
J objective. (either deterministic or stochastic)

p cost or regularization term.

Risk-Averse PDEOPT Motivating Examples 5/ 47



Shaping the Distribution v 9

Consider the typical objective function:

Xz (w) = T (5(2))(w) + p(2).
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Shaping the Distribution

Empirical CDFs of Random Objective

Consider the typical objective function:

Xz (w) = T (5(2))(w) + p(2).

Probabity
g

Every z yields a difference distribution for X, (see fig.)
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Empirical CDFs of Random Objective
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Consider the typical objective function:

J(5(2))(w) + p(2)-

Probabity
g

X, (w) :=
Every z yields a difference distribution for X, (see fig.)

We need to choose a numerical surrogate for risk R.

Motivating Examples 6/ 47
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From data to decision-making

Data Statistical inversion Random PDE
D = {((As, fi),u:)} to infer measure u € P(Q) V - (A(w) V) = f(w)
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Risk Measures!

Risk Neutral R = E: Optimize to achieve best performance on average, ignores outliers, tail events.

lSee e.g. A. Shapiro, D. Dentcheva, A. Ruszczynski Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia, 2009.
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Risk Neutral R = E: Optimize to achieve best performance on average, ignores outliers, tail events.
Mean-Variance R = vE + (1 — v)V: Accounts for risk via variance V, but V not monotone.
Value-at-Risk R[X] = inf{7 : P(X < 7) > S}:
Find smallest 7 such that with probability 3, 7(S(z)) does not exceed the value 7.
Conceptually very useful, but not subadditive, mathematically difficult to handle numerically.
Conditional Value-at-Risk R[X] := ﬁ fgl VaRq[X]da B € (0,1):

Many names: Excess Loss, Mean Shortfall, Average VaR, Tail VaR

Positively homogeneous, subadditive, monotone, translation equivariant:
CVaRg[X + ¢] = CVaRg[X] + ¢ for any c € R.

-B Belongs to the important class of coherent risk measures (Arztner, Delbaen,
Eber, Heath 1999)

TR CVaRg[X]| = inficp {t + ﬁE[(X —1)4] } (Rockafellar, Uryasev 2000)

1See e.g. A. Shapiro, D. Dentcheva, A. Ruszczynski Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia, 2009.
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A Contaminant Mitigation Problem?

‘43

—V - (eVu)+V -Vu=f in D
u=0 onI'y = {0} x (0,1)
eVu-n=0 on 0D\ Ty

D = (0,1)2 physical domain, u is the advected pollutant.

2D,P. Kouri, T. M. Surowiec, (2018). SIAM/ASA J. Uncertain. Quantif., 6(2), 787-815.
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Random inputs: €, V, f permeability, wind, sources of contaminant de-

fined over probability space (92, F,P). (top left) mean of f

—V - (e(w)Vu) + V(w) - Vu = f(w) in D, as.
u=0 on 'y = {0} x (0,1), a-s.
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D = (0,1)2 physical domain, u is the advected pollutant.

(top right) u with mean values for €, V, f, z = 0
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Random inputs: €, V, f permeability, wind, sources of contaminant de-

fined over probability space (92, F,P). (top left) mean of f

Find optimal placement of mitigating factors z by solving:

min {R E /D S<z)2dx] + Hz||1}

where S(z) = u : Q — H'(D) solves the weak form of

—V - (e(w)Vu) + V(w) - Vu = f(w)—Bz in D, as.
u=0 on I'y = {0} x (0,1), as.
e(w)Vu-n=0 on 9D\ Ty, as.

D = (0,1)2 physical domain, u is the advected pollutant.

(top right) u with mean values for e, V, f, 2 = 0

Z is the control space, e.g., L2(D) or R™; Z,y = {z € Z|0< z < 1}.

R : X — R is a numerical surrogate for “risk”, i.e., a risk measure.

2D,P. Kouri, T. M. Surowiec, (2018). SIAM/ASA J. Uncertain. Quantif., 6(2), 787-815.

Risk-Averse PDEOPT Mitigating Risk with Risk Measures 9 /47



A Contaminant Mitigation Problem? W

Find optimal placement of mitigating factors z by solving:

ain {e[5 [ s@2a] +1a01}

where S(z) = u : Q — H'(D) solves the weak form of

—V - (e(w)Vu) + V(w) - Vu = f(w)—Bz in D, as.
u=0 on I'y = {0} x (0,1), as.
e(w)Vu-n=0 on 9D\ Ty, as.

D = (0,1)2 physical domain, u is the advected pollutant.

Random inputs: €, V, f permeability, wind, sources of contaminant de-

fined over probability space (92, F,P). (top left) mean of f
Z is the control space, e.g., L2(D) or R™; Z,y = {z € Z|0< z < 1}. DO LN ETE R e Vo b 8 S E
_ (bottom left) optimal solution with R = E

R : X — R is a numerical surrogate for “risk”, i.e., a risk measure.

2D,P. Kouri, T. M. Surowiec, (2018). SIAM/ASA J. Uncertain. Quantif., 6(2), 787-815.

Risk-Averse PDEOPT Mitigating Risk with Risk Measures 9 /47



A Contaminant Mitigation Problem? PPN

Find optimal placement of mitigating factors z by solving:

1
ngjzrzd {CVaRg [5 /D,S'(z)2 dx} + ||z||1}

where S(z) = u : Q — H'(D) solves the weak form of

—V - (e(w)Vu) + V(w) - Vu = f(w)—Bz in D, as.
u=0 on I'y = {0} x (0,1), as.
e(w)Vu-n=0 on 9D\ Ty, as.

D = (0,1)2 physical domain, u is the advected pollutant.

Random inputs: €, V, f permeability, wind, sources of contaminant de-
fined over probability space (92, F,P).

Z is the control space, e.g., L2(D) or R™; Z,y = {z € Z|0< z < 1}.

R : X — R is a numerical surrogate for “risk”, i.e., a risk measure.

2D,P. Kouri, T. M. Surowiec, (2018). SIAM/ASA J. Uncertain. Quantif., 6(2), 787-815.

Risk-Averse PDEOPT Mitigating Risk with Risk Measures

(top left) mean of f
(top right) u with mean values for e, V, f, 2 = 0
(bottom left) optimal solution with R = E

(bottom right) with R = CVaRj3

9 /47



Thermal Compliance Topology Optim.

w

—V.-(E:eu)=F in D
eu = %(Vu—&-VuT) in D
u=g on 0D

R. Bollapragada, C. Karamanli, B. Keith, B. Lazarov, S. Petrides, & J. Wang (2023). Comput. Math. Appl., 149, 239-258.
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Thermal Compliance Topology Optim. v 9

-V (E(w) : eu) = F(w) in D,a.s.
eu = %(Vu +vau) in D,a.s.
u = g(w) on 9D, as.

Random inputs: Linear elastic isotropic material with uncertain Lamé
coefficients E traction forces g bulk forces F'.

3R. Bollapragada, C. Karamanli, B. Keith, B. Lazarov, S. Petrides, & J. Wang (2023). Comput. Math. Appl., 149, 239-258.
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Thermal Compliance Topology Optim.> ™, #

-V - (E(w)(?)) : eu) = F(w) in D,a.s.
eu = %(Vu +vaul) in D,a.s.
u = g(w) on 0D, a.s.

Random inputs: Linear elastic isotropic material with uncertain Lamé
coefficients E traction forces g bulk forces F'.

The material density z € Z,4 fulfills

z:D —R.

z(xz) € [0,1] a.e. on D (2 = 0 “no material”, z = 1 “material”).

Jp zdz < V5| D] (volume fraction).

3R. Bollapragada, C. Karamanli, B. Keith, B. Lazarov, S. Petrides, & J. Wang (2023). Comput. Math. Appl., 149, 239-258.
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Thermal Compliance Topology Optim.> ™, #

Find optimal material distribution z* that minimizes compliance:

— R[/DF(-)-S(z)da:} + p(2)

Z2€ 259

where S(z) = u solves
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Thermal Compliance Topology Optim.3 :, &

Find optimal material distribution z* that minimizes compliance:

in IE[/DF(-)-S(z)da:} + p(2)

ZEZy

where S(z) = u solves

-V - (E(w)(2)) : eu) = F(w) in D;as.
eu = %(Vu—I—VuT) in D,a.s.
u = g(w) on 9D, as.

Random inputs: Linear elastic isotropic material with uncertain Lamé
coefficients E traction forces g bulk forces F'.

The material density z € Z,4 fulfills

z: D —R.
z(z) € 0,1] a.e. on D (z =0 “no material”, z =1 “material”).
fD zdx § %|D| (volume fraction). (top) Optimal density field ignoring random inputs

(bottom) optimal density field using R = E.

3R. Bollapragada, C. Karamanli, B. Keith, B. Lazarov, S. Petrides, & J. Wang (2023). Comput. Math. Appl., 149, 239-258.

Risk-Averse PDEOPT Mitigating Risk with Risk Measures 10 / 47



From data to decision-making >

Data Statistical inversion Random PDE
D = {((As, fi),u:)} to infer measure u € P(Q) V - (A(w) V) = f(w)

Stoch. Optim.
L= gk kg Tk ek

Risk-Averse Optimization Risk models
mzin R(J(u(-),2)) R =E,,CVaRa...
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A Class of Risk Measures \: S\ 2

Using ®(X) = E[max{0, X }| = E[(X).], we can define several useful risk measures:
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Using ®(X) = E[max{0, X }] = E[(X)], we can define several useful risk measures:

Convex combination of the expected value and CVaR
— (1 — ; 1 _
R(X) = (1 - O)E[X] +t52£{a+ Loa(X a)}, Be(0,1), te (1]

Mean-plus-semideviation-from-target of order 1

R(X)=E[X]+cP(X —t), ¢>0, teR,

Mean-plus-semideviation of order 1

R(X) =E[X] + c®(X — E[X]), ¢>0,
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Abstract Formulation v 9
Many problems take the abstract form (with X = Z or Z X R, Xq C X):
min {g(z) + ®(G(z))} (P)

TEXyg

G : X — Y is a random operator (e.g. J(S(z)(w))), g is a differentiable function (e.g. E[J(S(2))]),
(92, F,P) complete probability space, J := L?(Q, F,P).

® : Y — Ris a functional that maps random variables into R (e.g. part of a risk measure)

Risk-Averse PDEOPT 13/ 47
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Assume @ : ) — R convex, positively homogeneous, monotonic wrt partial order on )
Example: ®(Y) :=E[(Y)].

® finite and convex on all of )V = ® is continuous and subdifferentiable.

O(Y) = 2(Y) and (V) = sup,cgpa() E[AY] VY €.

0P(0):=AC{A€Y|A>0 as.} is a nonempty, closed, bounded, convex "risk envelope”
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Towards a Primal-Dual Algorithm

mj\p g(z) + O(G(z)) = m/i\p sup g(z) + E]AG(z)] set £(x,A) := g(x) + E[AG(z)].
TE€Xad TEAad NeU
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Towards a Primal-Dual Algorithm >

min g(z) + ®(G(z)) = min sup g(x) + E]AG(z)] set £(z,A) := g(z) + E[NG(z)].

TE X,y TE€EXad N9l

The generalized augmented Lagrangian is then

Lz, A7) = ma {E(x, 6) — %E[(A = 9)2]} = g(x) + @, 1 (G(z)).

where @, (V) = inf 2 {®(Z) + ¥, x(Z — Y)} with U, y(Y) = E[\Y] + SE[Y?].

aSee D. P. Kouri and T. M. Surowiec, Epi-Regularization of Risk Measures Mathematics of Operations Research 45, 2 (2020), 774-795 for more on this technique.

Risk-Averse PDEOPT

15 / 47



Towards a Primal-Dual Algorithm >

mj\p g(z) + O(G(z)) = m/i\p sup g(z) + E]AG(z)] set £(x,A) := g(x) + E[AG(z)].
TE€Xad TEAad NeU

The generalized augmented Lagrangian is then

L(z,\7) = max {E(:c, 6) — %E[(A = 0)2]} = g(x) + @, 1 (G(z)).

where @, (V) = inf 2 {®(Z) + ¥, x(Z — Y)} with U, y(Y) = E[\Y] + SE[Y?].

Since ®@,. ) is an epi-regularized? version of ®, it is convex, monotonic, C! and I'-converges to ®(-).

aSee D. P. Kouri and T. M. Surowiec, Epi-Regularization of Risk Measures Mathematics of Operations Research 45, 2 (2020), 774-795 for more on this technique.
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Towards a Primal-Dual Algorithm >

mj\p g(z) + O(G(z)) = m/iYn sup g(z) + E]AG(z)] set £(x,A) := g(x) + E[AG(z)].
TE€Xad TEAad NeU

The generalized augmented Lagrangian is then

1 2
Do) = e { €5, 0) = 2B - 071} = g(a) + 8,0 (G(a))
where @, (V) = inf 2 {®(Z) + ¥, x(Z — Y)} with U, y(Y) = E[\Y] + SE[Y?].

Since @, ) is an epi-regularized? version of @, it is convex, monotonic, C! and I'-converges to D(-).
Letting 3 be the L2-projection onto 2, the maximizer above is given by

Az, A1) == P (rG(x) + N).

aSee D. P. Kouri and T. M. Surowiec, Epi-Regularization of Risk Measures Mathematics of Operations Research 45, 2 (2020), 774-795 for more on this technique.
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Towards a Primal-Dual Algorithm ";

This viewpoint goes back to the method of multipliers/augmented Lagrangian e.g.
Hestenes 1969, Powell 1969, Rockafellar 1976.
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Towards a Primal-Dual Algorithm >

This viewpoint goes back to the method of multipliers/augmented Lagrangian e.g.
Hestenes 1969, Powell 1969, Rockafellar 1976.

Solve a sequence of subproblems in 2 for minimizing L(z, A, 7).
Use A(z, A\, r) to update A.
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The PD-Risk Algorithm >

o
’ﬁ

Algorithm The Primal-Dual Risk Minimization Algorithm 4

Given g € X,q, 70 € (0,00), Ao € &, and stationarity error: &(x, A\, r) := ||z — P, (r — Vo L(z, A, 7))
Parameters p; € (0,1), px € (0,1), pr € (1,00),

Tolerances 0 < 7 < 74,0, and 0 < 7y < TA,0-

for k=0,1,2,... do

X

4See D.P. Kouri, T.M. Surowiec A primal-dual algorithm for risk minimization. Math. Programm. 193, 337-363 (2022). for a full convergence theory in the continuous setting.
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Given g € X,q, 70 € (0,00), Ao € &, and stationarity error: &(x, A\, 7) := ||z — P, (r — Vo L(z, A\, 7))|| x
Parameters p; € (0,1), px € (0,1), pr € (1,00),
Tolerances 0 < 7 < 74,0, and 0 < 7y < TA,0-
for k=0,1,2,... do
1. Find o141 € Xag s.t. S(@pp1, Ak, ) < To ke > Approximate primal solution

4See D.P. Kouri, T.M. Surowiec A primal-dual algorithm for risk minimization. Math. Programm. 193, 337-363 (2022). for a full convergence theory in the continuous setting.
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Algorithm The Primal-Dual Risk Minimization Algorithm 4

Given g € X,q, 70 € (0,00), Ao € &, and stationarity error: &(x, A\, 7) := ||z — P, (r — Vo L(z, A\, 7))|| x

Parameters p; € (0,1), px € (0,1), pr € (1,00),

Tolerances 0 < 7 < 74,0, and 0 < 7y < TA,0-

for k=0,1,2,... do
1. Find o141 € Xag s.t. S(@pp1, Ak, ) < To ke > Approximate primal solution
2. Set A1 = A(zpy1, M, k) > Dual update

4See D.P. Kouri, T.M. Surowiec A primal-dual algorithm for risk minimization. Math. Programm. 193, 337-363 (2022). for a full convergence theory in the continuous setting.
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Algorithm The Primal-Dual Risk Minimization Algorithm 4

Given g € X,q, 70 € (0,00), Ao € &, and stationarity error: &(x, A\, 7) := ||z — P, (r — Vo L(z, A\, 7))|| x

Parameters p; € (0,1), px € (0,1), pr € (1,00),

Tolerances 0 < 7 < 74,0, and 0 < 7y < TA,0-

for k=0,1,2,... do
1. Find o141 € Xag s.t. S(@pp1, Ak, ) < To ke > Approximate primal solution
2. Set A1 = A(zpy1, M, k) > Dual update

3. if 6(Ik+17>‘k7rk) <T7g and ”)‘k = )\k+1l|y < 7y then
| return zpg

> Check for primal and dual convergence

4See D.P. Kouri, T.M. Surowiec A primal-dual algorithm for risk minimization. Math. Programm. 193, 337-363 (2022). for a full convergence theory in the continuous setting.
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Algorithm The Primal-Dual Risk Minimization Algorithm 4

Given g € X,q, 70 € (0,00), Ao € &, and stationarity error: &(x, A\, 7) := ||z — P, (r — Vo L(z, A\, 7))|| x

Parameters p; € (0,1), px € (0,1), pr € (1,00),

Tolerances 0 < 7 < 74,0, and 0 < 7y < TA,0-

for k=0,1,2,... do
1. Find o141 € Xag s.t. S(@pp1, Ak, ) < To ke > Approximate primal solution
2. Set A1 = A(zpy1, M, k) > Dual update

3. if 6(Ik+17>‘k7rk) <T7g and ”)‘k = )\k+1l|y < 7y then
| return zpg

> Check for primal and dual convergence

4. 0f || Mg — >\k+1Hy > Tk then
L Th+1 = PrTk
> Increase penalty r; if dual variable changes significantly

4See D.P. Kouri, T.M. Surowiec A primal-dual algorithm for risk minimization. Math. Programm. 193, 337-363 (2022). for a full convergence theory in the continuous setting.
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The PD-Risk Algorithm

Algorithm The Primal-Dual Risk Minimization Algorithm 4

Given g € X,q, 70 € (0,00), Ao € &, and stationarity error: &(x, A\, r) := ||z — P, (r — Vo L(z, A, 7))
Parameters p; € (0,1), px € (0,1), pr € (1,00),

Tolerances 0 < 7 < 74,0, and 0 < 7y < TA,0-

for k=0,1,2,... do

1. Find o141 € Xag s.t. S(@pp1, Ak, ) < To ke > Approximate primal solution

X

2. Set A1 = A(zpy1, M, k) > Dual update

3. if 6(Ik+17>‘k7rk) <T7g and ”)‘k = )\k+1l|y < 7y then
| return zpg

> Check for primal and dual convergence

4. 0f || Mg — >\k+1Hy > Tk then
L Tk+1 = Prrk

> Increase penalty r; if dual variable changes significantly
5. Set Ty k41 = PaTr,k and T k41 = PATA k- > Decrease tolerances for increased accuracy (continuation)

4See D.P. Kouri, T.M. Surowiec A primal-dual algorithm for risk minimization. Math. Programm. 193, 337-363 (2022). for a full convergence theory in the continuous setting.
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From data to decision-making

Data
((As, fi),ui)}

Random PDE

Statistical inversion
V- (A(w) Vu) =

to infer measure p € P(Q)

Stoch Optim.
L= gk ke (s

HPC
Z=0(J

=

Risk-Averse PDEOPT

f(w)

Risk-Averse Optlmlzatlon
mm ’R ), ,z))

Risk models

R =E,,CVaR,...
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oo-Dim. Stochastic Optimization?

e

Jin E[J(5(2), 2)]
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oo-Dim. Stochastic Optimization? v 9

PD-Risk (and related methods) require:

ZrélizndE[J(S(z),z)] Gradients V,E[J(S(z), 2)]
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oo-Dim. Stochastic Optimization?

PD-Risk (and related methods) require:
min E[J(S(2), 2)] Gradients V,E[J(S(z), 2)]

2E€EZad
Hessian-vector products VZE[J(S(z), 2)]d2
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oo-Dim. Stochastic Optimization? >

PD-Risk (and related methods) require:
min E[J(S(z), 2)] Gradients V. E[J(S(z), 2)]

2€Zaq
Hessian-vector products VZE[J(S(z), 2)]d2

PDE-Optimization:
Replace Z by a finite-dim. space Zj,.

S(z) requires the solution of a PDE.

PDEs can be very expensive to solve.
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oo-Dim. Stochastic Optimization? >

PD-Risk (and related methods) require:
min E[J(S(z), 2)] Gradients V,E[J(S(z), 2)]

2€Zaq
Hessian-vector products VZE[J(S(z), 2)]d2

PDE-Optimization:

.. . Stochastic Optimization:
Replace Z by a finite-dim. space Zj,.

Cannot evaluate S(z) or S(zp).

S(z) requires the solution of a PDE. L N ,
Replace E[J (2)] by % > ;=1 J(2,£").

PDEs can be very expensive to solve.
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Essential computations >

How do we efficiently compute gradients?

How do we efficiently compute Hessian-vector products?
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Essential computations -

How do we efficiently compute gradients?
How do we efficiently compute Hessian-vector products?

The true Hessian is never available, Hessian-vector products suffice for second-order methods.
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Computing the Gradient

Given z € Z, calculate state u = S(z) by solving e(u, z) = 0.




Computing the Gradient >

Given z € Z, calculate state u = S(z) by solving e(u, z) = 0.

Given u, solve adjoint equation for A = P(z): dye(u, 2)*A = —0,J (u, 2).
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Computing the Gradient v 9

Given z € Z, calculate state u = S(z) by solving e(u, z) = 0.
Given u, solve adjoint equation for A = P(z): dye(u, 2)*A = —0,J (u, 2).
Given z,u, A calculate the full gradient
VI (z) = 0,e(u, 2)* A + 0y J (u, 2).
This might require an additional solve for the true discrete gradient.

In the linear case, we only require the solution of sparse structured linear systems for V7.
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Computing the Gradient >

Given z € Z, calculate state u = S(z) by solving e(u, z) = 0.
Given u, solve adjoint equation for A = P(z): dye(u, 2)*A = —0,J (u, 2).
Given z,u, A calculate the full gradient
VI (z) = 0,e(u, 2)* A + 0y J (u, 2).
This might require an additional solve for the true discrete gradient.

In the linear case, we only require the solution of sparse structured linear systems for V7.

Without adjoints, V.7 would contain large dense matrices due to the solution operators S, P.
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Parallelization in Smooth Linear Case >

Computing the gradient when using Monte Carlo is largely parallelizable.

Risk-Averse PDEOPT 22 /47



Parallelization in Smooth Linear Case >

Computing the gradient when using Monte Carlo is largely parallelizable.
N states solves (in parallel)

A =Bz + f(€)inH YD) i=1,...,N,
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Parallelization in Smooth Linear Case

Computing the gradient when using Monte Carlo is largely parallelizable.
N states solves (in parallel)

A(EYu=B(E)z+ f(€)in HY(D) i=1,...,N,
N adjoint solves (in parallel, serial with i*" state u)

AEY N =—J,(u(E),z)in HYD) i=1,...,N,

verse PDEOPT
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Computing the gradient when using Monte Carlo is largely parallelizable.
N states solves (in parallel)

A(EYu=B(E)z+ f(€)in HY(D) i=1,...,N,
N adjoint solves (in parallel, serial with i*" state u)
A& =T, (u(&),2)in H (D) i=1,...,N,

N “matrix-vector” products
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Parallelization in Smooth Linear Case v 9@

Computing the gradient when using Monte Carlo is largely parallelizable.
N states solves (in parallel)

A(EYu=B(E)z+ f(€)in H YD) i=1,...,N,
N adjoint solves (in parallel, serial with i*" state u)
A(EY N = —J(u(é),z) in HTY(D) i=1,...,N,
N “matrix-vector” products
B*(¢YA(¢) i=1,...,N.

~ N “axpy’s” for the weighted sum : V.7 (z) = —+ Zf;l B* (Y (&Y)
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Parallelization in Smooth Linear Case

Computing the gradient when using Monte Carlo is largely parallelizable.
N states solves (in parallel)

A(EYu = B(E)z+ f(&) in HY(D) i=1,...,N,
N adjoint solves (in parallel, serial with i*" state u)
AENV N = —J (u(€),z)in H (D) i=1,...,N,
N “matrix-vector” products
B*(¢YA(¢) i=1,...,N.
~ N “axpy’s” for the weighted sum : V.7 (z) = —+ Zf;l B* (Y (&Y)
Don't forget the Riesz maps/proper inner products!

Risk-Averse PDEOPT
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Essential computations >

A similar computation can be made for Hessian vector products that requires:
N x State + N x Adjoint + N x State Sensitivity + N x Adjoint Sensitivity

solves, where each class of N solves can be made in parallel.

Risk-Averse PDEOPT
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CVaR Minimization >

We consider the following stochastic optimization problem:

b
2(1-p)

where Z,4 C Z is a nonempty, closed, and convex set and S(z) = w is the unique solution to

min {t + E[[S(2) — uall7> — t)+} + %HZHQZ over (z,t) € Zaq X R} ) (1)

Finduel:E [/ AV - Vvda:] =E[(Bz+ f,v)u-ul, YveU.
D

where U := H(Q), U := L*(Q, F,P;U).
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CVaR Minimization >

We consider the following stochastic optimization problem:

b
2(1-p)

where Z,4 C Z is a nonempty, closed, and convex set and S(z) = w is the unique solution to

min {t + E[|S(2) — uall32 — t)d + %||z||22 over (z,t) € Zaq X R} ,

A(W)u = B(w)z + f(w) in HY(D), P-as. in Q.

Risk-Averse PDEOPT
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Is linear algebra really an issue? w 9
The Robust Stochastic Mirror Descent method yielded the following:
iter time(s) fval abs-err f rel-err f abs-err zy, rel-err zy,
100 1.4 3.1274e-01 | 1.3403e-01 | 7.4999e-01 | 2.7098e+02 | 8.3928e-01
1000 14.7 2.5017e-01 | 7.1464e-02 | 3.9989e-01 | 2.0949e+02 | 6.4885e-01
10000 152.0 2.0502e-01 | 2.6312e-02 | 1.4723e-01 | 1.4802e+02 | 4.5846e-01
100000 2054.2 1.8906e-01 | 1.0353e-02 | 5.7933e-02 | 1.0943e+02 | 3.3892e-01
1000000 | 104636.2 | 1.8411e-01 | 5.3994e-03 | 3.0213e-02 | 8.8822e+01 | 2.7510e-01
In contrast, using the PD-Risk with Monte Carlo we obtain:
N time(s) fval nstate nadjoint | nstatesens | nadjointsens | totalsolves
100 680.0 1.7924e-01 | 27500 7112 36554 36554 107720
1000 2889.3 1.7871e-01 | 83000 30035 197168 197168 507371
10000 | 23540.5 | 1.7871e-01 | 700000 | 268612 1594077 1594077 4156766

Risk-Averse PDEOPT
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L] L] L] A
From data to decision-making v 9
Data Statistical inversion Random PDE
((As, fi),us)} to infer measure p € P(Q) V- (A(w) Vu) = f(w)
Stoch Optim.
L= gk kg Tk
HPC Risk-Averse Optlmlzatlon Risk models
25 =0)J mm R(J(u(-),;2)) R:E#,CVaRa..}

Asymptotlc Statistics
+ > Xi — E[X]
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A More Statistical Numerical Analysis

D

Are solutions and optimal values stable with respect to shifts in distribution?
Can this stability be quantified?

What happens asymptotically in the “big data” limit?
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What happens asymptotically in the “big data” limit?

Fundamentally different questions to traditional numerical analysis in PDEs and optimal control:
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A More Statistical Numerical Analysis o

Are solutions and optimal values stable with respect to shifts in distribution?
Can this stability be quantified?

What happens asymptotically in the “big data” limit?

Fundamentally different questions to traditional numerical analysis in PDEs and optimal control:

FEM: finite dimensional spaces replace co-dimensional ones, but we always use the Lebesgue measure.

Mesh refinement increases the dimension of these spaces, but refinements are not random.
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Defining Stability® v @

Optimal Value: v(P) = inf /f z,w) dP(w).
2€Zaq

Optimal Solutions:  z(P) € argmin/ f(z,w) dP(w)

2EZ,q

B

5See J. Milz, T.M. Surowiec Asymptotic consistency for nonconvex risk- stochastic optimization with infinit
49 (3), 1403-1418 (2024) for results on the risk averse case.

| decision spaces Mathematics of Operations Research
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Defining Stability®

43

Optimal Value: v(P) = ng /fzw dP(w).
2E€Zad

Optimal Solutions:  z(P) € argmin/ f(z,w) dP(w)
2€Zaq

How does v or z change, when we replace P by Q7

B

5See J. Milz, T.M. Surowiec Asymptotic consistency for nonconvex risk stochastic optimization with infinit
49 (3), 1403-1418 (2024) for results on the risk averse case.
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Defining Stability® o

Optimal Value: v(P) = ng /fzw dP(w).
2E€Zad

Optimal Solutions: z(P) € argmm/ f(z,w) dP(w)
2EZ,q

How does v or z change, when we replace P by Q7

If Q := Py such that Py = P, does it hold that

v(Py) — v(P) and ||z(Pyn) — 2(P)||z — 07

B

5See J. Milz, T.M. Surowiec Asymptotic consistency for nonconvex risk stochastic optimization with infinit
49 (3), 1403-1418 (2024) for results on the risk averse case.

| decision spaces Mathematics of Operations Research
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A (Very) Brief History

Before 1980s: Foundational work on consistency in Maximum Likelihood Estimation
(e.g., Wald 1949, Huber 1967).
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A (Very) Brief History >

Before 1980s: Foundational work on consistency in Maximum Likelihood Estimation
(e.g., Wald 1949, Huber 1967).

1980s - 1990s: Extensive stability analysis for Stochastic Programming (finite-dimensions)
(e.g., Wets, Dupacova 1988, Shapiro 1991 King, Rockafellar 1993).

1990s - Present: Increasingly more complex parameter spaces and objective functions, e.g.,
nonsmooth objectives, constraints, integer variables
(e.g. Shapiro, Homem-de-Mello, Pflug, Rémisch...)

Our Core Framework: Based on the metric approach to studying optimal solutions under varying
probability laws, particularly following Rachev & Romisch (2002).
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Personal Contributions W

@ M. HorrHUES, W. RoOmiscH, T.M. SUROWIEC
On quantitative stability in infinite-dimensional optimization under uncertainty
Optim Lett 15, 2733-2756 (2021). https://doi.org/10.1007/s11590-021-01707-2

@ W. RowmiscH, T.M. SUROWIEC
Asymptotic properties of Monte Carlo methods in elliptic PDE-constrained optimization under uncertainty
Numer. Math. 156, 1887-1914 (2024). https://doi.org/10.1007/s00211-024-01436-5

Figure: Werner Romisch, 28.12.1947 - 12.7.2024
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Abstract Setting v 9

Decision variables are taken from Z, an infinite dimensional Hilbert space.

We assume the randomness arises from a random element £(w) and work with the law of .

E is a metric space, P € P(Z) the set of all Borel probability measures.

The probability measures themselves are the exogenous parameters.
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A Class of Random Operator Equations '; >

We derive a class of integrands f : Z x Z — R to motivate the general framework.
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We derive a class of integrands f : Z x Z — R to motivate the general framework.

Our random operator equation will be written in the form

AQu=2+g(&) (P-ae £€B).
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Our random operator equation will be written in the form
AQu=2+g(&) (P-ae £€B).

The real Hilbert spaces V. C H C V* constitute a Gelfand triple.
There exist 0 < v < L < o0, for each £ € E, such that A(§) € L(V,V*) and
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A Class of Random Operator Equations v 9

We derive a class of integrands f : Z x Z — R to motivate the general framework.

Our random operator equation will be written in the form
AQu=2+g(&) (P-ae £€B).

The real Hilbert spaces V. C H C V* constitute a Gelfand triple.
There exist 0 < v < L < o0, for each £ € E, such that A(§) € L(V,V*) and

Al < (A@©)v,v) VeV  and  (A€)v,w) < Liv|w| Vv,weV

uniform coercivity uniform boundedness

A :E — L(V,V*) is measurable and essentially bounded.

g : E — V* is measurable and essentially bounded (or more regular).
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Linear Quadratic Risk-Neutral Problems %, ~#

We derive a class of integrands f : Z x Z — R to motivate the general framework.
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Linear Quadratic Risk-Neutral Problems

L4

We derive a class of integrands f : Z x Z — R to motivate the general framework.

A(&)71: V* — V exists and is positive definite (with 1) and bounded (with %)

We consider the integrand inspired by PDE-constrained optimization:
1 1 2 o 9
f8 = 31407 (= 9©) —ually + FzI% (@ >0.ua € H)

for z € Z,q (closed, bounded, convex set) and £ € E.
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Linear Quadratic Risk-Neutral Problems , %

We derive a class of integrands f : Z x Z — R to motivate the general framework.

A(&)71: V* — V exists and is positive definite (with 1) and bounded (with %)

We consider the integrand inspired by PDE-constrained optimization:
1 1 2 o 9
f8 = 31407 (= 9©) —ually + FzI% (@ >0.ua € H)

for z € Z,q (closed, bounded, convex set) and £ € E.

This leads to the risk-neutral optimization problem:

win {EA{f(:)] = [ (2, 4P(E) 52 € Zua .
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A Growth Condition ‘:, N

Lemma (Hoffhues, Rémisch, Surowiec (2021))

For each P € P(E) and any z € Z,q4 we have

8

—(P)% < =
e~ =(P)IG <

(Ep[f(2)] - v(P))
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Lemma (Hoffhues, Rémisch, Surowiec (2021))

For each P € P(E) and any z € Z,q4 we have

8

—(P)% < =
e~ =(P)IG <

(Ep[f(2)] - v(P))

For any two P, @ € P(E) we immediately deduce

~ [Erl7(-(@))] - Eql/(=(Q))]

+Eq[f(2(P))] — Ep[f(2(P))]

12(Q) — 2(P)|1% <
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D

Lemma (Hoffhues, Rémisch, Surowiec (2021))

For each P € P(E) and any z € Z,q4 we have

8

—(P)% < =
e~ =(P)IG <

(Ep[f(2)] - v(P))

For any two P, @ € P(E) we immediately deduce

~ [Erl7(-(@))] - Eql/(=(Q))]

+ Eq[f(2(P))] — Ep[f(2(P))]| < Difference of expectations

12(Q) — 2(P)|1% <
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Zolotarev’s (-distances w9

Zolotarev (-distance on P(Z) (Zolotarev 83):

dz(P,Q) = sup |Ep[f] — Eg[f]|<= A difference of expectations!
fET

where § is a family of real-valued Borel measurable functions on E and P,Q € P(E).
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Probability Metrics

‘43

Compared with classical probability metrics we consider a much smaller family §:

Smi = {f(2,") : 2 € Z,9} (minimal information (m.i.) family).

This leads to a pseudometric?: the minimal information (m.i.) distance dg, ;.

?Distance between distinct points can be zero.
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Probability Metrics v 9

Compared with classical probability metrics we consider a much smaller family §:
Smi ={f(z,:) : 2 € Z,a} (minimal information (m.i.) family).

This leads to a pseudometric?: the minimal information (m.i.) distance dg, ;.

?Distance between distinct points can be zero.

Rachev & Romisch: Use the right metric for your problem class!

Wasserstein W is a (-distance, but §? is too rich and would give worse convergence rates.

?set of all 1-Lipschitz functions on =
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Lipschitz-type Estimates for d; . :, g

Theorem (Hoffhues, Rémisch, Surowiec (2021))

Under the standing assumptions we obtain the estimates
|U(Q) - U(P)| < d@mi (P7 Q)
2 1
4@ Pz < 2/ 2, (PO}

for P and Q) € P(E).
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A Refined Estimate

D

Theorem (Rémisch, Surowiec (2024))

Under the standing assumptions the Lipschitz-type estimate

8
12(Q) = 2(P)llmr < ~d5.. (P, Q)
holds for all P,Q € P(Z), where §4; denotes the following function class on =

Sai = {<azf(za ')ah>H 12 € Zag, ”h”H < 1} o
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A Refined Estimate w9

Theorem (Rémisch, Surowiec (2024))

Under the standing assumptions the Lipschitz-type estimate

8
12(Q) = 2(P)llmr < ~d5.. (P, Q)
holds for all P,Q € P(Z), where §4; denotes the following function class on =
Sdi = {<azf(za )ah>H VNS Zad7 ||h||H S 1} .

Quantifies changes under shifts in the underlying distribution.

Nonasymptotic, what about when Q = Py with N — +00?
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A Key Property for Asymptotics

Need § to be a P-uniformity class?, i.e. (Py), P € P(E), weak conv. of (Py) to P implies

N—o00

4Can be guaranteed by, e.g., Topsge (1967) under uniform boundedness and equicontinuity conditions
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A Key Property for Asymptotics >

Need § to be a P-uniformity class?, i.e. (Py), P € P(E), weak conv. of (Py) to P implies

N—o00

4Can be guaranteed by, e.g., Topsge (1967) under uniform boundedness and equicontinuity conditions

The standing assumptions imply both §,,; and §4 are P-uniformity classes.
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Monte Carlo Approximation v 9

For an iid random sample {£°}7 ; with law P, the empirical measure P, () is a perturbation of P.
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By the LLN (P, (:)) = P P-almost surely.
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Monte Carlo Approximation -

For an iid random sample {£°}7 ; with law P, the empirical measure P, () is a perturbation of P.

By the LLN (P, (:)) = P P-almost surely.

Since Fmi, Sai are P-uniformity classes, it holds that

V(Po() = v(P) and 2(Po(-)) = 2(P)  P-as.

P-uniformity (consistency) and stability implies convergence of the estimators!?

acy. Lax-Richtmyer (1956) Equivalence Theorem: Stability + Consistency => Convergence for numerical PDEs!
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Rate of Convergence and CLT "N

Theorem (Rémisch, Surowiec (2024))

E C R? js bounded, convex set and = C cl int

A(), g(x, ) have continuous partial derivatives up to order k2, with bounded, measurable derivatives,

k € N satisfies d < 2k.
Then:
1. Ep[v(Pa(-) — o(P)|] = O(n~3),
2. Bp[l|2(Pa()) — 2(P)l|u] = O(n~%),
3. (V(u(Pu(-)) — v(P))) ~ N(0, P(f(2(P)))?).

9 A is generated by a second-order elliptic operator with coefficient functions a;;(z, £) exibiting the requisite smoothness.
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A Random Elliptic Operator

Figure: Uncontrolled, random states: Three realizations of u(£) computed by setting z = 0.
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Convergence Rate Validation

Reference Solution: Compute v(P,) and
z(P,) with sample size n = 500 and FEM for

function spaces.
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Convergence Rate Validation >

Reference Solution: Compute v(P,) and
z(P,) with sample size n = 500 and FEM for
function spaces.

Test Runs: Select a range of smaller sample
sizesm =1,...,100.

Validation: For each m, run the experiment e By (@e) ' Valte Error
M = 100 times to generate a sample of solu-

tions and values. .
Empirical Convergence Rates:

Metrics: Compute the error against the refer- o Optimal Solution (z): O(m~°-%%)

ence solution P,: ‘
® Optimal Value (v): O(m=0-69)

12(Prm.j) — 2(Pa)llz2 and [0(Pr,j) — v(Pn)].
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Using the CLT >

We know the estimated optimal value v(P,,) converges asymptotically to the true value v(P):

Vi(u(Py) — v(P)) L N(0, P(f(2(P)))?)

where P(f(z(P)))? is the asymptotic variance.
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Using the CLT v 9

We know the estimated optimal value v(P,,) converges asymptotically to the true value v(P):

Vi(o(Pa) = v(P)) % N (0, P(f(2(P)))?)
where P(f(z(P)))? is the asymptotic variance.

The practical limiations are
® The true optimal value, v(P), is unknown.
® The asymptotic variance, P(f(z(P)))?, is unknown.
® We cannot directly use the CLT to construct confidence intervals.
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Using the CLT v 9

We know the estimated optimal value v(P,,) converges asymptotically to the true value v(P):
d
Va(u(Pn) = v(P)) = N(0, P(f(2(P)))?)
where P(f(z(P)))? is the asymptotic variance.

The practical limiations are
® The true optimal value, v(P), is unknown.
® The asymptotic variance, P(f(z(P)))?, is unknown.
® We cannot directly use the CLT to construct confidence intervals.

We remedy this with subsampling, which provides an asymptotically equivalent distribution that
mimics the true limiting distribution A/ (0, P(f(2(P)))?).
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The Subsampling Mechanics >

The ldea: Right Distribution, Wrong Size
® Traditional Bootstrap — Uses size n (right size), often inconsistent.

® Subsampling — Uses size b < n (wrong size), achieves the right limiting distribution.
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The Subsampling Mechanics N

The ldea: Right Distribution, Wrong Size
® Traditional Bootstrap — Uses size n (right size), often inconsistent.
Subsampling — Uses size b < n (wrong size), achieves the right limiting distribution.

Original Sample Size: n (large).
Subsample Size: Choose b, such that b — oo but £ — 0. (sample without replacement)
Iteration Count: m replicates, m — oo.

For j =1,...,m, draw subsample, compute v(P;} (N;L’b)), optimal value for subsample.
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The Subsampling Mechanics N

The ldea: Right Distribution, Wrong Size
® Traditional Bootstrap — Uses size n (right size), often inconsistent.
Subsampling — Uses size b < n (wrong size), achieves the right limiting distribution.

¢ Original Sample Size: n (large).

* Subsample Size: Choose b, such that b — oo but £ — 0. (sample without replacement)
® |teration Count: m replicates, m — oo.

® For j =1,...,m, draw subsample, compute v(P;(N;L’b)), optimal value for subsample.

The distribution of the subsampled statistic converges to the desired asymptotic distribution:

Vo(u(PE(NI?)) = v(Pn)) & N (0, P(f(2(P)))?)

Risk-Averse PDEOPT Subsampling Bootstrapped Confidence Intervals
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o

Practical Application l;

Using Ly, (-), the empirical CDF of the m subsample statistics, (1 — ) confidence interval for v(P):
Clh_a(v(P)) = [U(Pn) —n V2L (1 - a/2), w(P) - n_1/2L;}7(a/2)}

v(P,) provides the center; n~'/2 scales the empirical quantiles L} (-).
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. . . o
Practical Application v 9

Using Ly, (-), the empirical CDF of the m subsample statistics, (1 — ) confidence interval for v(P):
Clh_a(v(P)) = [U(Pn) —n V2L (1 - a/2), w(P) - n_1/2L;j)(oz/2)}

v(P,) provides the center; n~'/2 scales the empirical quantiles L} (-).

Parameters Used: n = 2000, b = 1000, m = 1000
Confidence Level: 95% (o = 0.05) yields

Clgs9, = [0.089148, 0.090720]

Validation Check: The 95% Cl was found to capture
the true optimal value in 84 out of 100 runs.
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Scalability via adjoint states and parallelizable gradient additional bound constraints.
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Inference for Non-Convexity: Extend stability, consis-
tency, and CLT to non-convex objectives and other risk
measures.

General Constraints: Extend PD-Risk variants to treat
additional bound constraints.

Time-Dependent Systems: Generalize theory and al-
gorithms to time-dependent (stochastic control) prob-
lems(?)
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Conclusion

Key Scientific Achievements
Modeling — Algorithms — Implementation — Stability

PD-Risk: A robust primal-dual framework for non-
smooth risk-averse optimization in co-dimensions.

Scalability via adjoint states and parallelizable gradient
and Hess-vec computations.

Rigorous quantitative stability bounds using probability
metrics like ||2(Q) — 2(P)|| < Cdr(P,Q) .

Asymptotic Consistency and O(n~1/2) rates in co-
dimensional spaces, validated by empirical experiments.

Open Challenges & Future Directions

Inference for Non-Convexity: Extend stability, consis-
tency, and CLT to non-convex objectives and other risk
measures.

General Constraints: Extend PD-Risk variants to treat
additional bound constraints.

Time-Dependent Systems: Generalize theory and al-
gorithms to time-dependent (stochastic control) prob-
lems(?)

Adaptive Sampling or Sketching: Go beyond current
work on risk-neutral case to treat non-smooth objec-
tives, state constraints, etc.

Thank You!
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Semismooth Newton for optimization, direct solves for PDEs, CG algorithm for Newton steps.

No Hessian actually formed, only Hessian-vector products
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Details of the Implementation "\

Implemented in Julia using the FE package Gridap on Simula’s eX3 computer.

State, adjoint, and sensitivity equations for separate samples &; do not communicate.

Semismooth Newton for optimization, direct solves for PDEs, CG algorithm for Newton steps.

No Hessian actually formed, only Hessian-vector products
Iterations reuse the n random stiffness matrices (state, adjoint, hess-vec); prefactor, cache.
Stopping criterion: absolute, relative tolerance of 10~2 for the discrete L?-norm of residual.

Over +100K runs with random data, SSN converges in less than 10 iterations on average.
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