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From data to decision-making

Data
D = {((Ai, fi), ui)}

Statistical inversion
to infer measure µ ∈ P(Ω)

Random PDE
∇ · (A(ω)∇u) = f(ω)

Risk models
R = Eµ,CVaRα...

Risk-Averse Optimization
min
z

R
(
J(u(·), ·; z)

)

Stoch. Optim.
zk+1 := zk − γk∂J (zk, ξk)

HPC
z⋆ = O∥(J)

Asymptotic Statistics
1
N

∑
Xi → E[X]
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Dealing with random objectives

Using a random PDE, means our objective becomes implicitly random:

min
z∈Zad

J (S(z))(ω) + ρ(z)

z ∈ Zad decision variables, designs, controls, etc. (deterministic)

z 7→ S(z) solution of the random PDE. (stochastic)

J objective. (either deterministic or stochastic)

ρ cost or regularization term.

Risk-Averse PDEOPT Motivating Examples 5 / 47



Shaping the Distribution

Consider the typical objective function:

Xz(ω) := J (S(z))(ω) + ρ(z).

Every z yields a difference distribution for Xz (see fig.)

We need to choose a numerical surrogate for risk R.
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Risk Measures1

Risk Neutral R = E: Optimize to achieve best performance on average, ignores outliers, tail events.

Mean-Variance R = νE+ (1− ν)V: Accounts for risk via variance V, but V not monotone.

Value-at-Risk R[X] = inf{τ : P(X ≤ τ) ≥ β}:
Find smallest τ such that with probability β, J (S(z)) does not exceed the value τ .

Conceptually very useful, but not subadditive, mathematically difficult to handle numerically.

Conditional Value-at-Risk R[X] := 1
1−β

∫ 1
β VaRα[X]dα β ∈ (0, 1):

Many names: Excess Loss, Mean Shortfall, Average VaR, Tail VaR

Positively homogeneous, subadditive, monotone, translation equivariant:
CVaRβ [X + c] = CVaRβ [X] + c for any c ∈ R.

Belongs to the important class of coherent risk measures (Arztner, Delbaen,
Eber, Heath 1999)

CVaRβ [X] = inft∈R
{
t+ 1

1−β
E[(X − t)+]

}
(Rockafellar, Uryasev 2000)

1
See e.g. A. Shapiro, D. Dentcheva, A. Ruszczynski Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia, 2009.
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A Contaminant Mitigation Problem2

Find optimal placement of mitigating factors z by solving:

min
z∈Zad

{[
1

2

∫
D

S(z)2 dx

]
+ ∥z∥1

}
where S(z) = u : Ω → H1(D) solves the weak form of

−∇ · (ϵ∇u) + V · ∇u = f

−Bz

in D

u = 0 on Γd = {0} × (0, 1)

ϵ∇u · n = 0 on ∂D \ Γd

D = (0, 1)2 physical domain, u is the advected pollutant.

Random inputs: ϵ,V, f permeability, wind, sources of contaminant de-
fined over probability space (Ω,F ,P).

Z is the control space, e.g., L2(D) or Rn; Zad = {z ∈ Z | 0 ≤ z ≤ 1}.

R : X → R is a numerical surrogate for “risk”, i.e., a risk measure.

(top left) mean of f

(top right) u with mean values for ϵ, V , f , z = 0

(bottom left) optimal solution with R = E

(bottom right) with R = CVaRβ

2
D.P. Kouri, T. M. Surowiec, (2018). SIAM/ASA J. Uncertain. Quantif., 6(2), 787-815.
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Thermal Compliance Topology Optim.3

−∇ · (E : ϵu) = F in D

ϵu = 1
2
(∇u+∇u⊤) in D

u = g on ∂D

Random inputs: Linear elastic isotropic material with uncertain Lamé
coefficients E traction forces g bulk forces F .

The material density z ∈ Zad fulfills

z : D → R.
z(x) ∈ [0, 1] a.e. on D (z = 0 “no material”, z = 1 “material”).∫
D z dx ≤ V0|D| (volume fraction).

(top) Optimal density field ignoring random inputs

(bottom) optimal density field using R = E.

3
R. Bollapragada, C. Karamanli, B. Keith, B. Lazarov, S. Petrides, & J. Wang (2023). Comput. Math. Appl., 149, 239–258.

Risk-Averse PDEOPT Mitigating Risk with Risk Measures 10 / 47



Thermal Compliance Topology Optim.3

−∇ · (E(ω) : ϵu) = F (ω) in D, a.s.

ϵu = 1
2
(∇u+∇u⊤) in D, a.s.

u = g(ω) on ∂D, a.s.

Random inputs: Linear elastic isotropic material with uncertain Lamé
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From data to decision-making

Data
D = {((Ai, fi), ui)}

Statistical inversion
to infer measure µ ∈ P(Ω)

Random PDE
∇ · (A(ω)∇u) = f(ω)

Risk models
R = Eµ,CVaRα...

Risk-Averse Optimization
min
z

R
(
J(u(·), ·; z)

)

Stoch. Optim.
zk+1 := zk − γk∂J (zk, ξk)

HPC
z⋆ = O∥(J)

Asymptotic Statistics
1
N

∑
Xi → E[X]
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A Class of Risk Measures

Using Φ(X) = E[max{0, X}] = E[(X)+], we can define several useful risk measures:

Convex combination of the expected value and CVaR

R(X) = (1− t)E[X] + t inf
a∈R

{
a+ 1

1−βΦ(X − a)
}
, β ∈ (0, 1), t ∈ (0, 1],

Mean-plus-semideviation-from-target of order 1

R(X) = E[X] + cΦ(X − t), c > 0, t ∈ R,

Mean-plus-semideviation of order 1

R(X) = E[X] + cΦ(X − E[X]), c > 0,
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Abstract Formulation

Many problems take the abstract form (with X = Z or Z × R, Xad ⊂ X ):

min
x∈Xad

{g(x) + Φ(G(x))} (P)

G : X → Y is a random operator (e.g. J(S(z)(ω))), g is a differentiable function (e.g. E[J(S(z))]),

(Ω,F ,P) complete probability space, Y := L2(Ω,F ,P).

Φ : Y → R is a functional that maps random variables into R (e.g. part of a risk measure)
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Assumptions and Observations on Φ

Assume Φ : Y → R convex, positively homogeneous, monotonic wrt partial order on Y

Example: Φ(Y ) := E[(Y )+].

Φ finite and convex on all of Y ⇒ Φ is continuous and subdifferentiable.

Φ(Y ) = Φ∗∗(Y ) and Φ(Y ) = supλ∈∂Φ(0) E[λY ] ∀Y ∈ Y.

∂Φ(0) := A ⊆ {λ ∈ Y |λ ≥ 0 a.s.} is a nonempty, closed, bounded, convex “risk envelope”
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Towards a Primal-Dual Algorithm

min
x∈Xad

g(x) + Φ(G(x)) = min
x∈Xad

sup
λ∈A

g(x) + E[λG(x)] set ℓ(x, λ) := g(x) + E[λG(x)].

The generalized augmented Lagrangian is then

L(x, λ, r) = max
θ∈A

{
ℓ(x, θ)− 1

2r
E[(λ− θ)2]

}
= g(x) + Φr,λ(G(x)).

where Φr,λ(Y ) = infZ{Φ(Z) + Ψr,λ(Z − Y )} with Ψr,λ(Y ) = E[λY ] + r
2E[Y

2].

Since Φr,λ is an epi-regularizeda version of Φ, it is convex, monotonic, C1 and Γ-converges to Φ(·).

Letting P be the L2-projection onto A, the maximizer above is given by

Λ(x, λ, r) := PA(rG(x) + λ).

a
See D. P. Kouri and T. M. Surowiec, Epi-Regularization of Risk Measures Mathematics of Operations Research 45, 2 (2020), 774–795 for more on this technique.
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Towards a Primal-Dual Algorithm

This viewpoint goes back to the method of multipliers/augmented Lagrangian e.g.
Hestenes 1969, Powell 1969, Rockafellar 1976.

Solve a sequence of subproblems in x for minimizing L(x, λ, r).

Use Λ(x, λ, r) to update λ.
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The PD-Risk Algorithm

Algorithm The Primal-Dual Risk Minimization Algorithm 4

Given x0 ∈ Xad, r0 ∈ (0,∞), λ0 ∈ A, and stationarity error: S(x, λ, r) := ∥x−PXad
(x−∇xL(x, λ, r))∥X

Parameters ρx ∈ (0, 1), ρλ ∈ (0, 1), ρr ∈ (1,∞),
Tolerances 0 < τx < τx,0, and 0 < τλ < τλ,0.
for k = 0, 1, 2, . . . do

1. Find xk+1 ∈ Xad s.t. S(xk+1, λk, rk) ≤ τx,k ▷ Approximate primal solution

2. Set λk+1 = Λ(xk+1, λk, rk) ▷ Dual update

3. if S(xk+1, λk, rk) ≤ τx and ∥λk − λk+1∥Y ≤ τλ then
return xk+1

▷ Check for primal and dual convergence

4. if ∥λk − λk+1∥Y > τλ,k then
rk+1 = ρrrk

▷ Increase penalty rk if dual variable changes significantly

5. Set τx,k+1 = ρxτx,k and τλ,k+1 = ρλτλ,k. ▷ Decrease tolerances for increased accuracy (continuation)

4
See D.P. Kouri, T.M. Surowiec A primal-dual algorithm for risk minimization. Math. Programm. 193, 337–363 (2022). for a full convergence theory in the continuous setting.
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From data to decision-making

Data
D = {((Ai, fi), ui)}
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to infer measure µ ∈ P(Ω)

Random PDE
∇ · (A(ω)∇u) = f(ω)

Risk models
R = Eµ,CVaRα...

Risk-Averse Optimization
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z

R
(
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)

Stoch. Optim.
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Asymptotic Statistics
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∞-Dim. Stochastic Optimization?

min
z∈Zad

E[J(S(z), z)]

Stochastic Optimization:

Cannot evaluate S(z) or S(zh).

Replace E[J (z)] by 1
N

∑N
i=1 J (z, ξi).
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Essential computations

How do we efficiently compute gradients?

How do we efficiently compute Hessian-vector products?

The true Hessian is never available, Hessian-vector products suffice for second-order methods.
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Computing the Gradient

Given z ∈ Z, calculate state u = S(z) by solving e(u, z) = 0.

Given u, solve adjoint equation for λ = P (z): ∂ue(u, z)
∗λ = −∂zJ(u, z).

Given z, u, λ calculate the full gradient

∇J (z) = ∂ze(u, z)
∗λ+ ∂uJ(u, z).

This might require an additional solve for the true discrete gradient.

In the linear case, we only require the solution of sparse structured linear systems for ∇J .

Without adjoints, ∇J would contain large dense matrices due to the solution operators S, P .
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Parallelization in Smooth Linear Case

Computing the gradient when using Monte Carlo is largely parallelizable.

N states solves (in parallel)

A(ξi)u = B(ξi)z + f(ξi) in H−1(D) i = 1, . . . , N,

N adjoint solves (in parallel, serial with ith state ui)

A(ξi)∗λ = −J ′
u(u(ξ

i), z) in H−1(D) i = 1, . . . , N,

N “matrix-vector” products

B∗(ξi)λ(ξi) i = 1, . . . , N.

≈ N “axpy’s” for the weighted sum : ∇J (z) = − 1
N

∑N
i=1 B

∗(ξi)λ(ξi)

Don’t forget the Riesz maps/proper inner products!
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Essential computations

A similar computation can be made for Hessian vector products that requires:

N × State +N × Adjoint +N × State Sensitivity +N × Adjoint Sensitivity

solves, where each class of N solves can be made in parallel.
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CVaR Minimization

We consider the following stochastic optimization problem:

min

{
t+

1

2(1− β)
E
[
∥S(z)− ud∥2L2 − t)+

]
+

α

2
∥z∥2Z over (z, t) ∈ Zad × R

}
, (1)

where Zad ⊂ Z is a nonempty, closed, and convex set and S(z) = u is the unique solution to

Find u ∈ U : E
[∫

D

A∇u · ∇vdx

]
= E[⟨Bz + f, v⟩U∗,U ], ∀v ∈ U .

where U := H1
0 (Ω), U := L2(Ω,F ,P;U).

Risk-Averse PDEOPT 24 / 47



CVaR Minimization

We consider the following stochastic optimization problem:

min

{
t+

1

2(1− β)
E
[
∥S(z)− ud∥2L2 − t)+

]
+

α

2
∥z∥2Z over (z, t) ∈ Zad × R

}
, (1)

where Zad ⊂ Z is a nonempty, closed, and convex set and S(z) = u is the unique solution to

A(ω)u = B(ω)z + f(ω) in H−1(D), P-a.s. in Ω.
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Is linear algebra really an issue?

The Robust Stochastic Mirror Descent method yielded the following:

iter time(s) fval abs-err f rel-err f abs-err xk rel-err xk

100 1.4 3.1274e-01 1.3403e-01 7.4999e-01 2.7098e+02 8.3928e-01
1000 14.7 2.5017e-01 7.1464e-02 3.9989e-01 2.0949e+02 6.4885e-01
10000 152.0 2.0502e-01 2.6312e-02 1.4723e-01 1.4802e+02 4.5846e-01
100000 2054.2 1.8906e-01 1.0353e-02 5.7933e-02 1.0943e+02 3.3892e-01
1000000 104636.2 1.8411e-01 5.3994e-03 3.0213e-02 8.8822e+01 2.7510e-01

In contrast, using the PD-Risk with Monte Carlo we obtain:

N time(s) fval nstate nadjoint nstatesens nadjointsens totalsolves
100 680.0 1.7924e-01 27500 7112 36554 36554 107720
1000 2889.3 1.7871e-01 83000 30035 197168 197168 507371
10000 23540.5 1.7871e-01 700000 268612 1594077 1594077 4156766
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From data to decision-making

Data
D = {((Ai, fi), ui)}

Statistical inversion
to infer measure µ ∈ P(Ω)

Random PDE
∇ · (A(ω)∇u) = f(ω)

Risk models
R = Eµ,CVaRα...

Risk-Averse Optimization
min
z

R
(
J(u(·), ·; z)

)

Stoch. Optim.
zk+1 := zk − γk∂J (zk, ξk)

HPC
z⋆ = O∥(J)

Asymptotic Statistics
1
N

∑
Xi → E[X]
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A More Statistical Numerical Analysis

Are solutions and optimal values stable with respect to shifts in distribution?

Can this stability be quantified?

What happens asymptotically in the “big data” limit?

Fundamentally different questions to traditional numerical analysis in PDEs and optimal control:

FEM: finite dimensional spaces replace∞-dimensional ones, but we always use the Lebesgue measure.

Mesh refinement increases the dimension of these spaces, but refinements are not random.
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Defining Stability5

Optimal Value: ν(P ) = inf
z∈Zad

∫
Ω

f(z, ω) dP (ω).

Optimal Solutions: z(P ) ∈ argmin
z∈Zad

∫
Ω

f(z, ω) dP (ω)

How does ν or z change, when we replace P by Q?

If Q := PN such that PN ⇒ P , does it hold that

ν(PN ) → ν(P ) and ∥z(PN )− z(P )∥Z → 0?

5
See J. Milz, T.M. Surowiec Asymptotic consistency for nonconvex risk-averse stochastic optimization with infinite-dimensional decision spaces Mathematics of Operations Research

49 (3), 1403-1418 (2024) for results on the risk averse case.
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A (Very) Brief History

Before 1980s: Foundational work on consistency in Maximum Likelihood Estimation
(e.g., Wald 1949, Huber 1967).

1980s - 1990s: Extensive stability analysis for Stochastic Programming (finite-dimensions)
(e.g., Wets, Dupačová 1988, Shapiro 1991 King, Rockafellar 1993).

1990s - Present: Increasingly more complex parameter spaces and objective functions, e.g.,
nonsmooth objectives, constraints, integer variables
(e.g. Shapiro, Homem-de-Mello, Pflug, Römisch...)

Our Core Framework: Based on the metric approach to studying optimal solutions under varying
probability laws, particularly following Rachev & Römisch (2002).
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Personal Contributions

M. Hoffhues, W. Römisch, T.M. Surowiec
On quantitative stability in infinite-dimensional optimization under uncertainty
Optim Lett 15, 2733–2756 (2021). https://doi.org/10.1007/s11590-021-01707-2

W. Römisch, T.M. Surowiec
Asymptotic properties of Monte Carlo methods in elliptic PDE-constrained optimization under uncertainty
Numer. Math. 156, 1887–1914 (2024). https://doi.org/10.1007/s00211-024-01436-5

Figure: Werner Römisch, 28.12.1947 - 12.7.2024
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Abstract Setting

Decision variables are taken from Z, an infinite dimensional Hilbert space.

We assume the randomness arises from a random element ξ(ω) and work with the law of ξ.

Ξ is a metric space, P ∈ P(Ξ) the set of all Borel probability measures.

The probability measures themselves are the exogenous parameters.
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A Class of Random Operator Equations

We derive a class of integrands f : Z × Ξ → R to motivate the general framework.

Our random operator equation will be written in the form

A(ξ)u = z + g(ξ) (P -a.e. ξ ∈ Ξ).

The real Hilbert spaces V ⊂ H ⊂ V ∗ constitute a Gelfand triple.

There exist 0 < γ < L < ∞, for each ξ ∈ Ξ, such that A(ξ) ∈ L(V, V ∗) and

γ∥v∥2V ≤ ⟨A(ξ)v, v⟩ ∀v ∈ V︸ ︷︷ ︸
uniform coercivity

and ⟨A(ξ)v, w⟩ ≤ L∥v∥∥w∥ ∀v, w ∈ V︸ ︷︷ ︸
uniform boundedness

A : Ξ → L(V, V ∗) is measurable and essentially bounded.

g : Ξ → V ∗ is measurable and essentially bounded (or more regular).
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Linear Quadratic Risk-Neutral Problems

We derive a class of integrands f : Z × Ξ → R to motivate the general framework.

A(ξ)−1 : V ⋆ → V exists and is positive definite (with 1
L ) and bounded (with 1

γ ).

We consider the integrand inspired by PDE-constrained optimization:

f(z, ξ) =
1

2

∥∥A(ξ)−1(z − g(ξ))− ud

∥∥2
H
+

α

2
∥z∥2Z (α > 0, ud ∈ H)

for z ∈ Zad (closed, bounded, convex set) and ξ ∈ Ξ.

This leads to the risk-neutral optimization problem:

min

{
EP [f(z)] =

∫
Ξ

f(z, ξ)dP (ξ) : z ∈ Zad

}
.
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A Growth Condition

Lemma (Hoffhues, Römisch, Surowiec (2021))

For each P ∈ P(Ξ) and any z ∈ Zad we have

∥z − z(P )∥2Z ≤ 8

α
(EP [f(z)]− v(P ))

For any two P,Q ∈ P(Ξ) we immediately deduce

∥z(Q)− z(P )∥2Z ≤ 4

α

[
EP [f(z(Q))]− EQ[f(z(Q))]

+ EQ[f(z(P ))]− EP [f(z(P ))]
]

⇐ Difference of expectations
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Zolotarev’s ζ-distances

Zolotarev ζ-distance on P(Ξ) (Zolotarev 83):

dF(P,Q) = sup
f∈F

|EP [f ]− EQ[f ]|⇐ A difference of expectations!

where F is a family of real-valued Borel measurable functions on Ξ and P,Q ∈ P(Ξ).
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Probability Metrics

Compared with classical probability metrics we consider a much smaller family F:

Fmi = {f(z, ·) : z ∈ Zad} (minimal information (m.i.) family).

This leads to a pseudometrica: the minimal information (m.i.) distance dFmi
.

aDistance between distinct points can be zero.

Rachev & Römisch: Use the right metric for your problem class!

Wasserstein W1 is a ζ-distance, but Fa is too rich and would give worse convergence rates.

aset of all 1-Lipschitz functions on Ξ
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Lipschitz-type Estimates for dFmi

Theorem (Hoffhues, Römisch, Surowiec (2021))

Under the standing assumptions we obtain the estimates

|v(Q)− v(P )| ≤ dFmi
(P,Q)

∥z(Q)− z(P )∥Z ≤ 2

√
2

α
dFmi(P,Q)

1
2

for P and Q ∈ P(Ξ).
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A Refined Estimate

Theorem (Römisch, Surowiec (2024))

Under the standing assumptions the Lipschitz-type estimate

∥z(Q)− z(P )∥H ≤ 8

α
dFdi

(P,Q)

holds for all P,Q ∈ P(Ξ), where Fdi denotes the following function class on Ξ

Fdi = {⟨∂zf(z, ·), h⟩H : z ∈ Zad, ∥h∥H ≤ 1} .

Quantifies changes under shifts in the underlying distribution.

Nonasymptotic, what about when Q = PN with N → +∞?
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A Key Property for Asymptotics

Need F to be a P-uniformity classa, i.e. (PN ), P ∈ P(Ξ), weak conv. of (PN ) to P implies

lim
N→∞

dF(PN ,P) = 0.

aCan be guaranteed by, e.g., Topsøe (1967) under uniform boundedness and equicontinuity conditions

The standing assumptions imply both Fmi and Fdi are P-uniformity classes.
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Monte Carlo Approximation

For an iid random sample {ξi}ni=1 with law P , the empirical measure Pn(·) is a perturbation of P .

By the LLN (Pn(·)) ⇒ P P-almost surely.

Since Fmi, Fdi are P -uniformity classes, it holds that

v(Pn(·)) → v(P ) and z(Pn(·)) → z(P ) P-a.s.

P -uniformity (consistency) and stability implies convergence of the estimators!a

a
Cf. Lax-Richtmyer (1956) Equivalence Theorem: Stability + Consistency ⇒ Convergence for numerical PDEs!
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Rate of Convergence and CLT

Theorem (Römisch, Surowiec (2024))

Ξ ⊂ Rd is bounded, convex set and Ξ ⊆ cl int Ξ

A(·), g(x, ·) have continuous partial derivatives up to order ka, with bounded, measurable derivatives,

k ∈ N satisfies d < 2k.

Then:

1. EP[|v(Pn(·))− v(P )|] = O(n− 1
2 ),

2. EP[∥z(Pn(·))− z(P )∥H ] = O(n− 1
2 ),

3. (
√
n(v(Pn(·))− v(P )))⇝ N (0, P (f(z(P )))2).

aA is generated by a second-order elliptic operator with coefficient functions aij(x, ξ) exibiting the requisite smoothness.
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A Random Elliptic Operator

Figure: Uncontrolled, random states: Three realizations of u(ξ) computed by setting z ≡ 0.
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Convergence Rate Validation

Reference Solution: Compute v(Pn) and
z(Pn) with sample size n = 500 and FEM for
function spaces.

Test Runs: Select a range of smaller sample
sizes m = 1, . . . , 100.

Validation: For each m, run the experiment
M = 100 times to generate a sample of solu-
tions and values.

Metrics: Compute the error against the refer-
ence solution Pn:

∥z(Pm,j)− z(Pn)∥L2 and |v(Pm,j)− v(Pn)|.

Solution Error (Control) Value Error

Empirical Convergence Rates:

• Optimal Solution (z): O(m−0.536)

• Optimal Value (v): O(m−0.660)
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Using the CLT

We know the estimated optimal value v(Pn) converges asymptotically to the true value v(P ):

√
n(v(Pn)− v(P ))

d−→ N (0, P (f(z(P )))2)

where P (f(z(P )))2 is the asymptotic variance.

The practical limiations are

• The true optimal value, v(P ), is unknown.

• The asymptotic variance, P (f(z(P )))2, is unknown.

• We cannot directly use the CLT to construct confidence intervals.

We remedy this with subsampling, which provides an asymptotically equivalent distribution that
mimics the true limiting distribution N (0, P (f(z(P )))2).
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The Subsampling Mechanics

The Idea: Right Distribution, Wrong Size

• Traditional Bootstrap → Uses size n (right size), often inconsistent.

• Subsampling → Uses size b ≪ n (wrong size), achieves the right limiting distribution.

• Original Sample Size: n (large).

• Subsample Size: Choose b, such that b → ∞ but b
n → 0. (sample without replacement)

• Iteration Count: m replicates, m → ∞.

• For j = 1, . . . ,m, draw subsample, compute v(P ∗
n(N

n,b
j )), optimal value for subsample.

The distribution of the subsampled statistic converges to the desired asymptotic distribution:

√
b(v(P ∗

n(N
n,b
j ))− v(Pn))

d−→ N (0, P (f(z(P )))2)
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Practical Application

Using Ln,b(·), the empirical CDF of the m subsample statistics, (1−α) confidence interval for v(P ):

CI1−α(v(P )) =
[
v(Pn)− n−1/2L−1

n,b(1− α/2), v(Pn)− n−1/2L−1
n,b(α/2)

]
v(Pn) provides the center; n−1/2 scales the empirical quantiles L−1

n,b(·).

Parameters Used: n = 2000, b = 1000, m = 1000
Confidence Level: 95% (α = 0.05) yields

CI95% = [0.089148, 0.090720]

Validation Check: The 95% CI was found to capture
the true optimal value in 84 out of 100 runs. √b(θ*_b - θ_N)

−0.04

−0.02

0

0.02

0.04
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Conclusion

Key Scientific Achievements

Modeling → Algorithms → Implementation → Stability

PD-Risk: A robust primal-dual framework for non-
smooth risk-averse optimization in ∞-dimensions.

Scalability via adjoint states and parallelizable gradient
and Hess-vec computations.

Rigorous quantitative stability bounds using probability
metrics like ∥z(Q)− z(P )∥ ≤ CdF (P,Q) .

Asymptotic Consistency and O(n−1/2) rates in ∞-
dimensional spaces, validated by empirical experiments.

Open Challenges & Future Directions

Inference for Non-Convexity: Extend stability, consis-
tency, and CLT to non-convex objectives and other risk
measures.

General Constraints: Extend PD-Risk variants to treat
additional bound constraints.

Time-Dependent Systems: Generalize theory and al-
gorithms to time-dependent (stochastic control) prob-
lems(?)

Adaptive Sampling or Sketching: Go beyond current
work on risk-neutral case to treat non-smooth objec-
tives, state constraints, etc.

Thank You!
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Details of the Implementation

Implemented in Julia using the FE package Gridap on Simula’s eX3 computer.

State, adjoint, and sensitivity equations for separate samples ξi do not communicate.

Semismooth Newton for optimization, direct solves for PDEs, CG algorithm for Newton steps.

No Hessian actually formed, only Hessian-vector products

Iterations reuse the n random stiffness matrices (state, adjoint, hess-vec); prefactor, cache.

Stopping criterion: absolute, relative tolerance of 10−8 for the discrete L2-norm of residual.

Over +100K runs with random data, SSN converges in less than 10 iterations on average.
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