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Higher dimensional gravity theories have attracted a great deal of attention in the physics community
as possible models for quantum gravity and as candidates to give a unified description of the main
forces in nature. The first of such theories was formulated by Kaluza in 1921 and revisited by Klein
in 1926, with the aim of describing gravity and electromagnetism. It postulates that the universe is
a 5-dimensional Lorentzian manifold (R1+3 × S1, (5)g), symmetric in the S1 direction and with (5)g
decomposing as follows

(5)g = gαβdx
αdxβ +Φ(dy +Aαdx

α)2.

In the above right hand side, xα are rectangular coordinates in R1+3 and y is the periodic coordinate,
g is a 4-dimensional metric, ϕ a scalar function and A a one-form. The 5-dimensional Einstein vacuum
equations (EVE) for (5)g yield a Einstein-Maxwell-scalar field system on R1+3 for the new unknowns
g̃ = Φ

1
2 g, Fαβ = ∂αAβ − ∂βAα and f = lnΦ.

Additional compact directions are also considered in string theory and M -theory. If one believes that
higher dimensional theories are truly fundamental, then it is important to study all their predictions,
including higher dimensional solutions. In a recent work [6] in collaboration with Huneau and Wyatt,
we proved that the Kaluza-Klein spacetime (R1+3 × S1, g), with g = −dt2 + dx2 + dy2, is stable
as a solution to the 5-dimensional EVE under generic small perturbations, confirming a conjecture
by Witten [8] and generalizing a result by Wyatt [9] in which only symmetric perturbations were
considered. Our result also applies to metrics gλ = −dt2 + dx2 + λ2dy2 on R1+3 × S1, for any λ > 0.
Non-symmetric perturbations of such metrics are highly oscillatory in the limit λ → 0.

In recent works by Huneau-Luk [4, 5], the limiting behavior of high-frequency solutions to the 4-
dimensional EVE is investigated. The so-called back-reaction effect was conjectured by Burnett in [1]:
in the special regime where a sequence of metrics gλ, solutions to the EVE, is such that

• gλ converges uniformly to a smooth Lorentzian metric g0, when λ → 0;

• the derivatives ∂gλ are locally bounded, uniformly with respect to λ,

the metric g0 is not in general solution to the EVE. The nonlinearities in EVE, in particular terms
of the form (∂gλ)

2, lead to a defect of convergence and an effective stress-energy tensor arises in the
equations satisfied by g0, corresponding to back-reaction. This tensor is conjectured by Burnett to be
the stress-energy tensor of a massless Vlasov field. In [1], the reverse question is also formulated: given
a solution g0 to the Einstein equations coupled with a massless Vlasov field, is it possible to construct a
sequence of metrics gλ, solutions to the EVE, such that gλ converges uniformly to g0, with derivatives
∂gλ uniformly locally bounded? Advances in that direction are to be found in a paper by Touati [7],
where a regular solution to the Einstein-null dust systems - with restriction on the number of dusts -
is shown to be the limit of a sequence of vacuum solutions in the sense described above.

In the Kaluza-Klein context, the presence of a compact direction shrinking to zero also leads to a
back-reaction effect and first computations on a toy model suggest that the effective stress-energy
tensor should be that of non-isotropic matter, which is a striking difference compared to the results
in [4, 5]. In fact, in contrast to the 4-dimensional case in which the EVE reduce to quasilinear waves
equations in the so-called wave gauge, the intrinsic nature of the EVE in this higher dimensional setting
is that of a wave-Klein-Gordon type system, in which massless waves interact nonlinearly with massive
(Klein-Gordon) ones. It is then very interesting to understand the differences that this feature brings
in compared to the works mentioned above and to prove an analogue of Burnett’s conjecture for the
Kaluza-Klein theory.

In this post-doctoral research project, the first part of the work should be exploratory and aimed
at showing a back-reaction effect, in the limit where the compact direction shrinks to zero, on some
relevant examples (e.g. on quasilinear wave equations that are good toy models for the EVE) . Even
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on these examples, we foresee possible issues related to an apparent loss of derivatives in the limit
equation and issues more related to the semi-classical limit. These should be tackled by adapting ideas
developed in [3] and [2] respectively.

Once the nature of the limiting stress-energy tensor is understood on some toy models, the reverse
question could be analyzed: if a certain matter model arises as such limit, is it true that all solutions
(at least in certain regimes) to the Einstein equations coupled with that matter model can be achieved
as a limit of vacuum higher-dimensional solutions in the sense described above?
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