SPECTRAL INVARIANTS AND LEGENDRIAN INTERSECTIONS

DYLAN CANT

Institut de mathématique d'Orsay, Université Paris-Saclay

Presentation Maths en Herbes 2025

E-mail address: dylan@dylancant.ca.

1. **Persistence modules.** Consider the category Γ_2 with two objects:

$$A \xrightarrow{c} B$$

There are three morphisms 1_A , 1_B and c.

Let Vect be the category of finite dimensional vector spaces.

Question: Can one classify functors $\Gamma \rightarrow \text{Vect up to isomorphism}$?

Note: A *functor* is a choice of two vector spaces V(A) and V(B) and a linear map V(c) between them. An *isomorphism* is a commutative square:

$$V_{1}(A) \xrightarrow{V_{1}(c)} V_{1}(B)$$

$$\downarrow^{\sim} \qquad \qquad \downarrow^{\sim}$$

$$V_{2}(A) \xrightarrow{V_{2}(c)} V_{2}(B)$$

2. **Persistence modules.** Similarly with Γ_3 :

$$A \xrightarrow{c_1} B \xrightarrow{c_2} C$$

Yes: using *barcodes*:

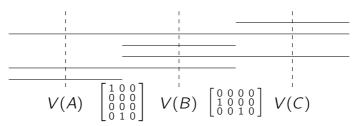
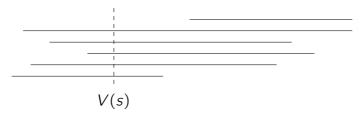


Figure 1. Barcode classifying isomorphism class of functors $\Gamma_3 \rightarrow Vect$

3. **Persistence modules.** Consider the category $\Gamma_{\mathbb{R}}$, with one object for each real number *s*, and an arrow $s_1 \rightarrow s_2$ if $s_1 \leq s_2$.

Definition: A functor $\Gamma_{\mathbb{R}} \rightarrow$ Vect is called a *persistence module*.

Functors $\Gamma_{\mathbb{R}} \rightarrow$ Vect can be classified by barcodes as well.



Typically one requires *upper continuity*: $V(s) = \lim_{s' \to s+} V(s')$.

Two interesting spaces: $V_{\infty} = \lim_{s \to \infty} V(s)$ and $V_{-\infty} = \lim_{s \to -\infty} V(s)$.

Modern language: the V_{∞} is *colimit* of the functor and $V_{-\infty}$ is the *limit*.

4. **Persistence modules.** Persistence modules arise in the *topological analysis of data* (see, e.g., *DATASHAPE group at Orsay*).

Let $P \subset \mathbb{R}^n$ be a finite set (of data).

Let $X(s) = \{q \in \mathbb{R}^n : \inf_{p \in P} |q - p| < s\}$. A thickened version of P.

Let $V_d(s) = H_d(X(s))$ be the *d*th homology of X(s).

Because $X(s_1) \subset X(s_2)$ if $s_1 \leq s_2$, there are maps $V_d(s_1) \rightarrow V_d(s_2)$.

Figure 2. This data set will have a long bar in the persistence module using H_1 .

5. **Spectral invariants.** Often it arises that one has many persistence modules V whose colimits are the same.

Let us therefore fix a vector space HW and consider some set V_{Λ} , $\Lambda \in \mathcal{L}$, of persistence modules, with isomorphisms $V_{\infty} \simeq$ HW.

Given a class $\zeta \in HW$ and $\Lambda \in \mathcal{P}$, define the number:

 $c(\zeta; \Lambda) = \inf \{ s : V_{\Lambda}(s) \to \mathsf{HW} \text{ hits } \zeta \}.$

When does the class ζ appear in the persistence module V_{Λ} .

6. **Spectral invariants for linear maps.** Let us consider \mathcal{P} the class of symmetric linear endomorphisms $\Lambda : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$.

For each Λ , define the function $f : \mathbb{RP}^n \to \mathbb{RP}^n$ given by:

$$f(x) = \frac{\langle x, \Lambda x \rangle}{\langle x, x \rangle}.$$

Note: $\mathbb{RP}^n = (\mathbb{R}^{n+1} - \{0\})/\mathbb{R}$, so f is well-defined.

Define a persistence module $V_{\Lambda}(x) := H_*(\{f \le s\}; \mathbb{Z}/2).$

Then $V_{\Lambda,\infty} \simeq H_*(\mathbb{RP}^n; \mathbb{Z}/2) = \mathbb{Z}/2q^0 \oplus \mathbb{Z}/2q \oplus \cdots \oplus \mathbb{Z}/2q^n$.

The class of q^k represents the homology class of $\mathbb{RP}^{n-k} \subset \mathbb{RP}^n$.

This gives n + 1 spectral invariants: $\lambda_k = c(q^k; \Lambda)$.

Theorem. $\lambda_0 \geq \lambda_1 \geq \cdots \geq \lambda_n$ are the eigenvalues of Λ .

Chazal, Glisse, Oudot based at Paris-Saclay.

End of Part 1

7. A particular contact manifold. Let M^n be a smooth manifold, and let Y be the space of pairs (q, π) where π is a cooriented hyperplane. Special hyperplane distribution $\xi \subset TY$; vectors $(\delta q, \delta \pi)$ based at the

point (q, π) lie in the distribution if δq is tangent to π . Skating.

A Riemannian metric induces a flow: $R_s(q_0, \pi_0) = (q_1, \pi_1)$ holds if the unique geodesic of length *s* starting at q_0 positively orthogonal to π_0 ends at q_1 .

Flow preserves ξ and is transverse ξ (Reeb flow R_s).

8. Legendrians. A Legendrian is an *n*-dimensional submanifold $\Lambda \subset Y$ so that $T\Lambda \subset \xi$ holds at all points.

Famous Conjecture. If Y, Λ are compact, and if R_s is a Reeb flow, and Λ is a Legendrian, there exists some $s \neq 0$ so that $R_s(\Lambda) \cap \Lambda \neq \emptyset$.

This conjecture is typically attributed to the famous Russian mathematician Arnol'd, and is called Arnol'd's chord conjecture. 9. Normal chords. Let $N \subset M$ be a submanifold of positive codimension. Define:

$$\Lambda = \{ (q, \pi) : q \in N \text{ and } TN \subset \pi \}.$$

Then Λ solves the conjecture for the geodesic Reeb flow if and only if N admits a geodesic normal chord.

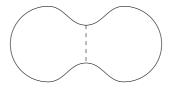


Figure 3. Normal chords are a special case of the conjecture

Arnol'd (not based at Paris-Saclay)

<mark>Graduate Texts</mark> in Mathematics

V.I. Arnold

Mathematical Methods of Classical Mechanics

Second Edition

Deringer

End of Part 2

10. A category of Legendrians. A path Λ_s of Legendrians is nonnegative if any curve $x(s) \in \Lambda_s$ is never negatively transverse to ξ . For instance, if R_s is a Reeb flow, then $\Lambda_s = R_s(\Lambda_0)$ is non-negative Introduce $\mathcal{C}(\Lambda_0)$ the category whose objects are Legendrian isotopies Λ_t , and whose morphisms $\Lambda_t \to \Lambda'_t$ are homotopy classes of squares $\Lambda_{s,t}$:

$$\Lambda_t = \Lambda_{0,t} \boxed{\bigwedge_{\lambda_{0,t}}} \Lambda'_t = \Lambda_{1,t}$$

Figure 4. Morphisms in the category are homotopy classes of such squares where $\Lambda_{s,1}$ is a non-negative path.

11. **Discriminant functors.** A functor $HF : C(\Lambda_0) \to Vect$ such that: (*) The morphism $HF(\Lambda_{s,t}) : HF(\Lambda_{0,t}) \to HF(\Lambda_{1,t})$ is an isomorphism provided $\Lambda_{s,1} \cap \Lambda_0 \neq \emptyset$ holds for all s.

Idea: if one can construct a suitably rich discriminant functors, then one can prove $R_s(\Lambda_0) \cap \Lambda_0 \neq \emptyset$ for s > 0.

Modern techniques in *Floer theory* also suggest a way to construct these functors, and this is an active topic of research.

12. Spectral invariants for Legendrian intersections. Discriminant

functor HF yields persistence modules.

Fix a Reeb flow R, and define:

$$V_{R,\Lambda_t}(s) = \mathsf{HF}(R_{st}(\Lambda_t)).$$

The colimit HW is independent of Λ_t and R.

Spectral invariants $c_R(\zeta; \Lambda_t)$ are numbers s such that $R_s(\Lambda_1) \cap \Lambda_0 \neq \emptyset$.

Thus, if $\Lambda_1 = \Lambda_0$, and $c_R(\zeta; \Lambda_t) \neq 0$, then the conjecture holds.

13. Spectral invariants for Legendrian intersections. It is convenient to consider classes of discriminant functors such that the colimit HW has a class ζ with:

(*)
$$c_R(\zeta; \Lambda_0) = 0$$
 for all R .

- In search of a contradiction, suppose R_s(Λ₀)∩Λ₀ = Ø for all numbers s ≠ 0. Then it is known that one can define a discriminant functor satisfying (*).
- (2) If (*) holds, and Λ_t is a positive isotopy, then $c(\zeta, \Lambda_t) > 0$. In particular, if there exists a *positive loop* Λ_t , then the conjecture holds for Λ_0 .

Similar ideas can be used to prove the conjecture if there exists a loop Λ_t such that paths $x(t) \in \Lambda_t$ are non-zero in $\pi_1(Y, \Lambda_0)$.

14. **Conclusion.** It is rather an interesting development that the idea of a persistence module (originating from topological data analysis) has achieved a prominent status in my field of research.

Symplectic topology as the geometry of generating functions

Claude Viterbo*

Ceremade, U.A. 749 du C.N.R.S., Université de Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, F-75775 Paris Cedex 16, France

Received November 5, 1990; in revised form July 7, 1991

Figure 5. Claude Viterbo, one of the pioneers of spectral invariants in symplectic geometry. Based at Paris-Saclay.