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Le corps C est algébriquement clos

Thm. Soit P = αdX
d + . . .+α1X+α0 ∈ C[X], avec d > 0, αd 6= 0. Alors

(a) P admet une racine complexe λ, i.e. P (λ) = 0.
(b) On peut écrire P = αd

∏d
i=1(X − λi).

Dém. de (a) ⇒ (b). Par récurrence sur d. Une fois qu’on a une racine λ1 ∈
C, on peut écrire par division euclidienne des polynômes P = (X−λ1)Q+R,
où R est une constante, en fait nulle car R(λ1) = 0. (b) pour Q implique
alors (b) pour P . qed

(a) n’est pas un énoncé d’algèbre, et toutes les preuves nécessitent des ar-
guments d’analyse ou de topologie.

Dém. de (a). Supposons par l’absurde que P n’a pas de racine complexe.
Donc P (z) 6= 0 pour tout z ∈ C. Alors la fonction à valeurs réelles f(z) :=

1
|P (z)| est continue sur C. De plus, en regardant les croissances on voit que
c’est une fonction cloche, i.e lim|z|→∞ f(z) = 0. Donc la fonction f atteint
un maximum. On conclut alors par un argument local au voisinage de ce
maximum. qed
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Cas des corps arbitraires

Définition. Si K est corps, un polynôme P ∈ K[X] est irréductible sur K
si on ne peut pas écrire P = P1P2 avec Pi ∈ K[X] de degré > 0.

Théorème. Si P est irréductible sur K, alors K[X]/PK[X] est un corps
qui est une extension de K de degré d.

Dém. K[X]/PK[X] est un anneau, qui est aussi une K-algèbre de dimen-
sion d sur K. Pour que ce soit un corps, il suffit de montrer que tout élément
non nul R ∈ K[X]/PK[X] est inversible. Comme P irréductible et grâce à
la division euclidienne (Bézout), on peut écrire AR + BP = 1 dans K[X].
Alors A est un inverse de R dans K[X]/PK[X]. qed

• Pour un polynôme P ∈ K[X] général (normalisé) de degré d, on peut
écrire P = P s1

1 . . . P sr
r , où les Pi sont irréductibles normalisés de degré di.

• Les nombres si sont de nature géométrique, ce sont des multiplicités. Les
nombres di sont de nature arithmétique. Ce sont les degrés des extensions
K[X]/PiK[X] de K.

• On a d =
∑

i disi.
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Variétés algébriques et leurs points
• Une variété algébrique affine X sur un corps K est un fermé algébrique de
l’espace affine AN

K défini par des polynômes Pi ∈ K[X1, . . . , XN ] (satisfai-
sant certaines conditions : réduit, irréductible).

Définition. un K-point de X est un N -uplet x = (x1, . . . , xN ) ∈ KN

satisfaisant Pi(x1, . . . , xN ) = 0 pour tout i. Notation x ∈ X(K).

• On peut parler aussi de L-point de X pour tout surcorps K ⊂ L (notation
X(L)).

• Si l’extension K ⊂ L est finie, on dit que x est un point fermé de X.

Définition. Si x ∈ X(L) est un point fermé de X, le degré de x est défini
comme le degré de l’extension K ⊂ L.

Définition. Soit Z ⊂ AN
K fermé algébrique de dimension 0, défini par un

idéal I ⊂ K[X1, . . . , XN ]. On définit degZ comme la dimension sur K de
K[X1, . . . , XN ]/I.

• Le degré de Z contient trois sortes d’informations. 1) le nombre de points
de Z, 2) leurs multiplicités, 3) leur corps L de définition.
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Géométrie projective

• Espace projectif PN
K= droites vectorielles dans KN+1.

• Coordonnées X0, . . . , XN sur KN+1.

• PN
K contient l’espace affine

{X0 = 1} = AN
K = { droites non contenues dans X0 = 0}

et aussi l’espace projectif

PN−1
K = { droites contenues dans X0 = 0} (“hyperplan à l’infini”).
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Géométrie projective, suite

• Géométrie euclidienne : deux droites distinctes dans un plan sont paral-
lèles ou se coupent en un seul point.

• Géométrie projective : deux droites distinctes dans un plan se coupent
en un seul point. (Deux droites parallèles se rencontrent « à l’infini »).

• Les plans vectoriels Pi = 〈∆i, 0〉 s’intersectent en une droite vectorielle
∆ ⊂ {X0 = 0}.
• Le point de P2 correspondant à la droite ∆ est le point d’intersection à
l’infini de ∆1 et ∆2.



Polynômes homogènes

• Pour tout polynôme P (z) =
∑

i αiz
i, de degré d, on a un polynôme

Phom :=
∑

i αiX
d−i
0 Xi

1. Phom restreint à {X0 = 1} = A1 est P et Phom ne
s’annule pas à l’infini (le point (0, 1)).

• L’espace des polynômes homogènes de degré d à 2 variables est isomorphe
à l’espace des polynômes de degré 6 d à une variable.

• Un polynôme Q(z) = αd′z
d′ + . . . de degré d′ < d a une homogénéisa-

tion αd′X
d−d′
0 Xd′

1 + . . . .... Outre les d′ zéros de Q, il possède un zéro de
multiplicité d− d′ en X0 = 0 (le point à l’infini).

• Un polynôme homogène de degré d enN+1 variables et coefficients dansK
ne définit pas une fonction sur PN

K à valeurs dansK, car P (λx0, . . . , λxN ) =
λdP (x0, . . . , xN ).

• Cependant il définit un “fermé algébrique” {P = 0} ⊂ PN
K qui dans chaque

ouvert affine Xi = 1 est défini par le polynôme P (X0, . . . , 1, . . . XN ).



Polynômes homogènes

• Pour tout polynôme P (z) =
∑

i αiz
i, de degré d, on a un polynôme

Phom :=
∑

i αiX
d−i
0 Xi

1. Phom restreint à {X0 = 1} = A1 est P et Phom ne
s’annule pas à l’infini (le point (0, 1)).

• L’espace des polynômes homogènes de degré d à 2 variables est isomorphe
à l’espace des polynômes de degré 6 d à une variable.

• Un polynôme Q(z) = αd′z
d′ + . . . de degré d′ < d a une homogénéisa-

tion αd′X
d−d′
0 Xd′

1 + . . . .... Outre les d′ zéros de Q, il possède un zéro de
multiplicité d− d′ en X0 = 0 (le point à l’infini).

• Un polynôme homogène de degré d enN+1 variables et coefficients dansK
ne définit pas une fonction sur PN

K à valeurs dansK, car P (λx0, . . . , λxN ) =
λdP (x0, . . . , xN ).

• Cependant il définit un “fermé algébrique” {P = 0} ⊂ PN
K qui dans chaque

ouvert affine Xi = 1 est défini par le polynôme P (X0, . . . , 1, . . . XN ).



Le théorème de Bézout

Théorème. (Bézout) Sur n’importe quel corps : soient P (X,Y, Z),Q(X,Y, Z)
deux polynômes homogènes de degrés dP et dQ, définissant les courbes CP ,
CQ respectivement. On suppose que l’intersection CP ∩CQ est de dimension
0. Alors le degré de Z := CP ∩ CQ est égal à dPdQ.

• Cas dP = dQ = 1. Deux droites se rencontrent en un point.

Idée de la démonstration : calculer combien de conditions d’annulation
impose Z aux polynômes homogènes de degré l avec l grand. Par définition,
ce nombre est degZ. qed

Remarque. Sur C, on peut utiliser un argument topologique. Il suffit de
montrer que le degré de CP ∩ CQ ne dépend pas du choix de CP et CQ.
En effet, si on prend pour CP l’union de dP droites ∆i et CQ l’union de dQ
autres droites ∆′j , on trouve CP ∩ CQ =

⋃
ij ∆i ∩∆′j , soit dPdQ points.
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Points des courbes cubiques planes

Théorème. Soit E ⊂ P2 une courbe de degré 3 lisse définie sur un corps
K. Si E a un point fermé z de degré d premier à 3, alors E a un K-point.

Démonstration. Écrivons d = 3d′−k, où k = 1, 2. L’espace des polynômes
homogènes Q(X,Y, Z) de degré d′ est de dimension 1 + (d′)2+3d′

2 . Le sous-
espace des polynômes homogènes Q(X,Y, Z) de degré d′ qui s’annulent sur
E est de dimension 1 + (d′−3)2+3(d′−3)

2 = 1 + (d′)2−3d′
2 .

Celui des polynômes homogènes de degré d′ qui s’annulent sur z est de
dimension ≥ 1 + (d′)2+3d′

2 − 3d′ + k = 1 + (d′)2−3d′
2 + k.

Donc il existe un polynôme homogène Q(X,Y, Z) de degré d′ qui s’annule
sur z et pas sur E. Soit PE l’équation définissant E. Par Bézout, le degré
de l’intersection Q = PE = 0 est 3d′ et contient z, qui est de degré 3d′− k.

Le “reste" de l’intersection z′ := {Q = PE = 0} \ z est donc de degré k. Si
k = 1 c’est un K-point de E. Si k = 2, il existe une droite ∆ contenant z′.
Alors ∆ ∩ E contient z′ et est de degré 3. Le reste ∆ ∩ E \ z′ est de degré
1 et est donc un K-point. qed
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Autour d’une conjecture de Cassels et Swinnerton-Dyer

Conjecture. (Cassels et Swinnerton-Dyer) Soit X ⊂ Pn+1
K lisse sur K, (car.

K = 0) admettant un point fermé de degré premier à 3. Alors X admet un
K-point.

• dimension n = 1, c’est le théorème précédent.

• dimension 2, Coray 1976
Thm. Soit X ⊂ P3

K lisse sur K, (car. K = 0) admettant un point fermé de
degré premier à 3. Alors X a un point fermé de degré 1, 4 ou 10.

• Voisin 2025 : mêmes hypothèses ⇒ X a un point fermé de degré 1 ou 4.

(dim 3 et degré 4, Voisin 2025)
Thm. Pour tout nombre impair N , il existe KN et une quartique lisse dans
P4
KN

ayant un point fermé de degré N et pas de point de degré impair < N .

• Pour les surfaces quartiques, ce théorème est une conséquence de Mumford
(1968). En dimension 3, les hypersurfaces qu’on obtient sont “de Fano” et
les arguments de Mumford ne s’appliquent pas.
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