Points et zéro-cycles des variétés algébriques

Claire Voisin

CNRS, IMJ-PRG

Maths en herbe
21 janvier 2026



Le corps C est algébriquement clos

Thm. Soit P = agX%+...+a1X +ag € C[X], avecd > 0, ag # 0. Alors
(a) P admet une racine complexe A, i.e. P(\) = 0.

(b) On peut écrire P = ag[I (X — \).
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Dém. de (a) = (b). Par récurrence sur d. Une fois qu'on a une racine A\; €
C, on peut écrire par division euclidienne des polynémes P = (X —\1)Q+R,
ol R est une constante, en fait nulle car R(A;) = 0. (b) pour @ implique
alors (b) pour P. qed
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(a) n'est pas un énoncé d'algébre, et toutes les preuves nécessitent des ar-
guments d'analyse ou de topologie.

Dém. de (a). Supposons par |'absurde que P n'a pas de racine complexe.
Donc P(z) # 0 pour tout z € C. Alors la fonction a valeurs réelles f(z) :=
ﬁ est continue sur C. De plus, en regardant les croissances on voit que
c'est une fonction cloche, i.e lim,|_,, f(2) = 0. Donc la fonction f atteint
un maximum. On conclut alors par un argument local au voisinage de ce

maximum. qed



Cas des corps arbitraires

Définition. Si K est corps, un polynéme P € K[X] est irréductible sur K
si on ne peut pas écrire P = P| Py avec P; € K[X| de degré > 0.
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Définition. Si K est corps, un polynéme P € K[X] est irréductible sur K
si on ne peut pas écrire P = P\ P, avec P; € K[X]| de degré > 0.

Théoréeme. Si P est irréductible sur K, alors K[X]|/PK[X] est un corps
qui est une extension de K de degré d.

Dém. K[X]/PK|[X] est un anneau, qui est aussi une K-algébre de dimen-
sion d sur K. Pour que ce soit un corps, il suffit de montrer que tout élément
non nul R € K[X]/PK|X] est inversible. Comme P irréductible et grace a
la division euclidienne (Bézout), on peut écrire AR + BP = 1 dans K[X].
Alors A est un inverse de R dans K[X]/PK|[X]. qed
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e Pour un polynéme P € K[X]| général (normalisé) de degré d, on peut
écrire P = P' ... P, ou les P; sont irréductibles normalisés de degré d;.

e Les nombres s; sont de nature géométrique, ce sont des multiplicités. Les
nombres d; sont de nature arithmétique. Ce sont les degrés des extensions
K[X]/PK[X] de K.

eOnad= szlsl



Variétés algébriques et leurs points

e Une variété algébrique affine X sur un corps K est un fermé algébrique de
I'espace affine A% défini par des polynémes P; € K[X1, ..., Xy] (satisfai-
sant certaines conditions : réduit, irréductible).

Définition. un K-point de X est un N-uplet x = (x1,...,2y) € KV
satisfaisant P;(x1,..., xn) = 0 pour tout i. Notation x € X (K).

e On peut parler aussi de L-point de X pour tout surcorps K C L (notation
X(L)).

e Si I'extension K C L est finie, on dit que = est un point fermé de X.
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e Une variété algébrique affine X sur un corps K est un fermé algébrique de
I'espace affine A% défini par des polynémes P; € K[X1, ..., Xy] (satisfai-
sant certaines conditions : réduit, irréductible).

Définition. un K-point de X est un N-uplet x = (x1,...,2y) € KV
satisfaisant P;(x1,..., xn) = 0 pour tout i. Notation x € X (K).

e On peut parler aussi de L-point de X pour tout surcorps K C L (notation
X(L)).
e Si I'extension K C L est finie, on dit que = est un point fermé de X.

Définition. Si = € X (L) est un point fermé de X, le degré de x est défini
comme le degré de I'extension K C L.

Définition. Soit Z C A% fermé algébrique de dimension 0, défini par un
idéal I C K[X1,...,Xn]. On définit deg Z comme la dimension sur K de
K[X1,...,XN]/I.

e Le degré de Z contient trois sortes d'informations. 1) le nombre de points
de Z, 2) leurs multiplicités, 3) leur corps L de définition.



Géomeétrie projective

e Espace projectif PX'= droites vectorielles dans KNV +1.

e Coordonnées X, ..., Xn sur KN+1,

o PX¥ contient I'espace affine

{Xo = 1} = AY = { droites non contenues dans X, = 0}
et aussi |'espace projectif

PR ! = { droites contenues dans X, = 0} (“hyperplan a I'infini").
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Géomeétrie projective, suite

e Géométrie euclidienne : deux droites distinctes dans un plan sont paral-
léles ou se coupent en un seul point.

e Géométrie projective : deux droites distinctes dans un plan se coupent
en un seul point. (Deux droites paralléles se rencontrent « a l'infini »).

e Les plans vectoriels P; = (A;,0) s'intersectent en une droite vectorielle
A C {XQ = 0}

e Le point de P? correspondant a la droite A est le point d'intersection a
I'infini de A7 et As.



Polynémes homogénes

e Pour tout polyndme P(z) = >, ;2. de degré d, on a un polynéme
Phom = 3. ;X3 X, Poom restreint a {Xg = 1} = A' est P et Py, ne
s'annule pas a l'infini (le point (0,1)).

e L'espace des polyndmes homogeénes de degré d a 2 variables est isomorphe
a I'espace des polyndmes de degré < d a une variable.

e Un polynéme Q(z) = agz® + ... de degré d’ < d a une homogénéisa-
tion ad/ngd X{l, + ....... Outre les d’ zéros de Q, il posséde un zéro de
multiplicité d — d’ en Xy = 0 (le point a l'infini).
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e Un polynéme homogéne de degré d en N+1 variables et coefficients dans K
ne définit pas une fonction sur PX a valeurs dans K, car P(Axg, ..., \zy) =
AdP({B(), ce ,.I'N).

e Cependant il définit un “fermé algébrique” {P = 0} C PX qui dans chaque
ouvert affine X; = 1 est défini par le polynéme P(Xy,...,1, ... Xn).



Le théoréme de Bézout

Théoréme. (Bézout) Sur n'importe quel corps : soient P(X,Y, Z), Q(X,Y, Z)
deux polynémes homogénes de degrés dp et dg, définissant les courbes Cp,
Cgq respectivement. On suppose que l'intersection CpNCyq est de dimension
0. Alors le degré de Z := Cp N Cg est égal a dpdg.

e Cas dp = dg = 1. Deux droites se rencontrent en un point.
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Cgq respectivement. On suppose que l'intersection CpNCyq est de dimension
0. Alors le degré de Z := Cp N Cg est égal a dpdg.

e Cas dp = dg = 1. Deux droites se rencontrent en un point.

Idée de la démonstration : calculer combien de conditions d'annulation
impose Z aux polynémes homogénes de degré [ avec [ grand. Par définition,
ce nombre est deg Z. ged

Remarque. Sur C, on peut utiliser un argument topologique. Il suffit de
montrer que le degré de Cp N Cg ne dépend pas du choix de Cp et Cy.
En effet, si on prend pour Cp I'union de dp droites A; et Cg I'union de dg
autres droites A’;, on trouve Cp N Cq = J,;; Ai N A}, soit dpdg points.



Points des courbes cubiques planes

Théoréme. Soit E C P? une courbe de degré 3 lisse définie sur un corps
K. Si E a un point fermé z de degré d premier a 3, alors E a un K -point.
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de I'intersection Q = Pg = 0 est 3d’ et contient z, qui est de degré 3d’ — k.
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Théoréme. Soit E C P? une courbe de degré 3 lisse définie sur un corps
K. Si E a un point fermé z de degré d premier a 3, alors E a un K -point.
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espace des polyndmes homogenes Q(X,Y, Z) de degré d’ qui s'annulent sur

E est de dimension 1 + w =1+ M.

Celui des polynémes homogenes de degré d’' qui s'annulent sur z est de

dimensionZl+w_3d’+k:1+w+k_

Donc il existe un polynéme homogéne Q(X,Y, Z) de degré d' qui s'annule
sur z et pas sur E. Soit Py I'équation définissant E. Par Bézout, le degré
de I'intersection Q = Pg = 0 est 3d’ et contient z, qui est de degré 3d’ — k.

Le “reste" de I'intersection 2z’ := {Q = Pg = 0} \ z est donc de degré k. Si
k =1 c'est un K-point de E. Si k = 2, il existe une droite A contenant 2.
Alors A N E contient 2’ et est de degré 3. Le reste AN E'\ 2’ est de degré
1 et est donc un K-point. ged



Autour d'une conjecture de Cassels et Swinnerton-Dyer

Conjecture. (Cassels et Swinnerton-Dyer) Soit X < P! Jisse sur K, (car.
K = 0) admettant un point fermé de degré premier a 3. Alors X admet un
K-point.

e dimension n = 1, c'est le théoréme précédent.
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e Voisin 2025 : mémes hypothéses = X a un point fermé de degré 1 ou 4.
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Thm. Soit X C P3. lisse sur K, (car. K = 0) admettant un point fermé de
degré premier a 3. Alors X a un point fermé de degré 1, 4 ou 10.

e Voisin 2025 : mémes hypothéses = X a un point fermé de degré 1 ou 4.

(dim 3 et degré 4, Voisin 2025)

Thm. Pour tout nombre impair N, il existe Ky et une quartique lisse dans

P ayant un point fermé de degré N et pas de point de degré impair < N.
N

e Pour les surfaces quartiques, ce théoréme est une conséquence de Mumford
(1968). En dimension 3, les hypersurfaces qu'on obtient sont “de Fano" et
les arguments de Mumford ne s’appliquent pas.



