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1 Scientific Context and Motivation
A fundamental challenge in neuroscience is the estimation of synaptic weights between neurons.
This remains a largely open problem. A common experimental approach involves using multi-
electrode arrays (MEAs) on cultured neurons. A typical setup consists of a few hundred neurons
on an array with a few hundred electrodes. These extracellular electrodes do not directly measure
the membrane potentials of individual neurons ; instead, they record the precise timings of their
action potentials, or "spikes".

A key feature of these electrodes is that they are bidirectional: in addition to recording
spike times, they can be used to externally stimulate a neuron, thereby increasing its probability
of firing. To date, statistical methods developed to infer the network’s interaction graph have
generally not leveraged this bidirectional capability. The temporal resolution of the electrodes is
excellent (on the order of a millisecond), and a typical experiment lasts about 15 minutes, with
neurons firing at an average rate of 10 Hz.

2 Project Objective
The primary objective of this postdoctoral project is to address the following stochastic control
problem:

How can we optimally stimulate the neurons via the electrodes to most effectively and
accurately estimate their synaptic weights?

3 Mathematical framework
We propose the following mathematical model. We consider a network of N neurons, where the
state of each neuron i is described by its membrane potential, V i

t . The dynamics of each neuron
are governed by the following stochastic differential equation:

dV i
t = αi

tdt +
N

∑
j=1

Jj→idN j
t − V i

t−dN i
t .

The terms in this equation are defined as follows:

• V i
t ∈ R is the membrane potential of neuron i.
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• N i
t is a Poisson point process with stochastic intensity f(V i

t−). This process represents the
spike train of neuron i. The rate function f(v) is assumed to be known and monotonically
increasing, such that a higher membrane potential leads to a higher probability of firing an
action potential.

• The term −V i
t−dN i

t models the reset mechanism: immediately following a spike, the neuron’s
membrane potential is reset to its resting value, which is set to zero in this model.

• When neuron j spikes, the membrane potential of a postsynaptic neuron i is instantaneously
increased by the quantity Jj→i. This is the synaptic weight we aim to estimate.

• Finally, (αi
t) is the stochastic control, representing the current injected into neuron i

through its corresponding electrode.

We assume that the observable data consists of the spike times of all N neurons, which
corresponds to the filtration:

FN
t = σ(N j

s , s ≤ t, j ∈ {1, . . . , N}).

Admissible controls are defined as predictable processes with respect to this filtration.

4 Bayesian Formulation and Optimization
We adopt a Bayesian perspective. We define a known prior distribution over the synaptic weights:

µ0 = L((Jj→i, i, j ∈ {1, . . . , N})).

The posterior distribution, µt, is then the law of the weights given the observed history of spikes:

µt = L((Jj→i, i, j ∈ {1, . . . , N}) ∣ FN
t ).

The optimization problem is to determine the optimal control strategy: How should we choose
the controls (αi

t) to minimize a variance-based criterion on the final posterior distribution µT ?
To tackle this problem, we will employ methodologies based on stochastic filtering for point

processes, see [1].

5 Proposed Research Directions
This project open several research steps and directions:

1. Theoretical Formulation: Formalize the stochastic control problem using Girsanov’s
theorem to handle the change of measure induced by the control and the observations.

2. Posterior Distribution Dynamics: Derive the evolution of the posterior measure (µt)
using a Zakai-type equation for point processes and study the structural properties of its
solution.

3. Algorithms to sample along the posterior distribution: Develop and analyze algorith-
mic techniques, such as interacting particle systems (sequential Monte Carlo methods), to
sample from the posterior distribution µt. A possible direction is to study the convergence
properties of these algorithms.

2



4. Measure-Valued Control Problem: Conduct a theoretical analysis of the control
problem by formulating and studying the corresponding Hamilton-Jacobi-Bellman (HJB)
equation on the space of probability measures. The analysis will initially focus on simplified
“toy model” (e.g., estimating a single synaptic weight).

5. Numerical Solution: Develop numerical methods to solve the control problem, particularly
leveraging machine learning techniques suitable for high-dimensional stochastic control. This
investigation will also begin with simpler toy problems before scaling to larger networks.

6. Candidate Profile
We are seeking a candidate with a strong background in either:

• Stochastic processes, with a focus on stochastic filtering or stochastic control or analysis of
interacting particle system driven by jump processes.

• Scientific computing and machine learning, with an interest in solving high-dimensional
stochastic control problems.

A candidate with expertise in both areas would be ideal.

7. Collaborations
The project will involve collaborations and discussions with experimental neuroscientists at the
NeuroPSI institute (Paris-Saclay) and the NeuroMod institute (Nice) at various stages of the
research.
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