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@ Introduction to Shape Optimization



Canonical Example: The isoperimetric problem

* Find the shortest curve enclosing a given area.

min Per ().
min Per(0) J

* Equivalently: Find the greatest area that can be enclosed by a curve of given length.

max |Q].

Per(Q2)=c J

Questions:
o A solution exists? Is it regular?
e Find it!
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* Steiner’s proof (1838): (he in fact tried to give at least five proofs for this problem)
e Pick four points on the boundary

o If the quadrilateral is not cyclic then its area can be increased without modifying
the perimeter

o Therefore, any shape which is not a disk can be improved!
@ Conclusion: the disk solves the isoperimetric problem.

* There’s a gap in the argument above!
* Other proofs: Fourier series, symmetrization, optimality conditions, etc.
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Existence of a solution is important!

Theorem. Among all curves of a given
length, the circle encloses the greatest
area.

Proof. For any curve that is not a circle,
there is a method (given by Steiner) by
which one finds a curve that encloses
greater area. Therefore the circle has the
greatest area. |

Theorem. Among all positive integers,
the integer 1 is the largest.

Proof. For any integer that is not 1, there
is a method (to take the square) by which
one finds a larger positive integer. There-
fore 1 is the largest integer. |

Direct method in the calculus of variations: non-trivial here

e Find a minimizing/maximizing sequence f(x,) — inf f (what topology?)

o Compactness: Find a converging subsequence: x, — =*

e Continuity: Prove that f is (semi) continuous: lim f(z,) = f(z™).
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What is the best shape of an ice cube?

* Ideally we would like to maximize the contact region between the ice cube and the
liquid

tmas Per(©). J

Question: Do we have existence of an optimal shape in this case?
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Recalling basic Optimality conditions

HLg: X—>R
* min f(z) (unconstrained): z* solution = V f(z*) = 0.
* minof(x) (constrained): x* solution = V f(z*) = A\Vg(z*).
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Polygonal isoperimetric inequality

min Per(P)
|P|=c

Existence of solutions: ”immediate” (classical compactness arguments)
Optimality conditions: V Per(P) = AV Area(P)

Gradient of the area Gradient of the perimeter
VPer
VArea
a .
j
ajy
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* collinear with height in Aa;_1aja;41 * collinear with bisector in Aa;_jaja;i1

In the end: optimality conditions imply that P is the regular n-gon.
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Solution to the isoperimetric problem I

min Per(92). J
|Q]=c

: General Shape Q: n-gon

* the solution is the disk * the solution is the regular n-gon

Heuristic argument

If the optimal shape among general shapes is the disk then, when restricting to
n-gons the regular one should be optimal.
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Various Topics in Shape Optimization

min J () J
QeA

Theoretical aspects Numerical aspects Practical aspects

* existence, regularity * choice of discretization % industrial problems

* shape derivative * efficient computations * modelization

* find optimal shapes * new theoretical ideas * simulation

* qualitative properties * solve theoretical gaps x MMOF team—CMAP
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© Eigenvalues of the Laplace operator



Eigenvalues

A € R4 symmetric, positive definite: 27 Az > 0 for x # 0.

Spectral theorem

There exists an orthonormal basis of R made of eigenvectors of (v;)%, of A
corresponding to eigenvalues

O0< A < X< <\

* eigenvectors characterize invariant subspaces of A
* why are they interesting?
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Applications

Knowing the spectrum is good for:

@ Solving linear systems Az = b:

d d )
b:;&viza::z;)\;vz

@ Solving systems of Ordinary Differential Equations %} + AU =0,U(0) = ug

UO-ZﬁzUz:>U Zﬂzexp —Ait)v

=1

Decay rate in the worst case: exp(—Ait)v;
To have a small decay rate we need a small \;.
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Laplace operator

* Dimension 1: Au :=u"

Pu 92
* Dimension 2: Au := 92 + GT;

82 62 82
* Dimension 3: Au:= —— + ——5 + agu

dz? ~ Oy? 022

0
Heat equation: ¢: [0,7] x @ — R, a—z —Aq=0, q(0,z) = qo(z), q(t,z) = 0 for x € IN.
* The Laplacian with Dirichlet boundary conditions has a sequence of eigenvalues
0 < A1(Q) < X\2(22) < ... = o0 solving the following problems:

—Aup = M(Qug inQ
u, = 0 on Of).

* if gg = Zk>1 Brui then q(t, z) Zﬁke n( uk x).
k>0
* The heat is best preserved when for large t when A;(£2) is minimal
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Optimization of spectral quantities with respect to the domain

[Lord Rayleigh, Theory of sound, Second Edition, p.339, first published in 1877]

210. We have seen that the gravest tone of a membrane,
whose boundary is approximately circular, is nearly the same as
that of a mechanically similar membrane in the form of a circle of
the same mean radius or area. If the area of a membrane be
given, there must evidently be some form of boundary for which
the pitch (of the principal tone) is the gravest possible, and this

Rayleigh quotients: Ag(£2) = min max M
SkCHL(Q) seSp\{0} Jo #Pd

1
—Au=u, uwe Ho(2)  Sealing: A (tQ) = M (Q)/£2.
Monotonicity: 21 C Q9 = )\k(Ql) > )\k(Qg)
0 < M() < Ao(Q)... Multiplicity: if © is connected then A\ (2) < Aa(€2)
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Optimizing Eigenvalues - Drums

Lord Rayleigh - The Theory of Sound (1877)

The shape that minimizes the area of a membrane at given frequency is the disk. I

The disk minimizes A1(€2) at fixed area

—Au = A(Qu inQ
u = 0 on 0f
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Symmetryzation

Steiner symmetrization: consider a direction L

e rearrange all slices of 2 with hyperplanes orthogonal to L
into segments centered on L @

e for u: 2 — R the Steiner symmetrization consists in
performing a Steiner symmetrization for all its level sets

photo: [Treibergs,
Steiner Symmetrization
and Applications)
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Motivation for performing symmetrizations

Some properties:

) = 127, / o = / (u*)? and / Vul? > / Y
Q QO* Q Q*

Important consequence. Symmetrization decreases the first eigenvalue at fixed
volume

Vul|? Vupl? . [ Vui]?
)\1(9): inf fQ| u| :fQ| U1| >fQ’ u1| 2)\1(9*)

weHY ()0 [o u? Joui = Jo.(u})?
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Minimizing the first Dirichlet-Laplace eigenvalue

u = 0 on 0f)

{Au = M(Qu inQ

Faber-Krahn (1920-1923) Polya-Szeg6 Conjecture (1920-1923)
The disk minimizes A;(Q2) at The regular n-gon minimizes A1 (£2) among
fixed area. n-gons of fixed area.

* Symmetrization decreases A\ * An optimal n-gon exists [Henrot, Ezxtremum

problems for eigenvalues|.
* Cases n € {3,4} solved by Polya and Szego.
* Proofs based on Steiner symmetrization.
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What is known?

Up to re-scalings the following problems are equivalent:

o 2, MO @R IONE), pip (u)+10))

* n = 3: the equilateral triangle is the minimizer
Proof: A sequence of Steiner symmetrizations w.r.t the
mediatrix of the sides converges to the equilateral triangle.

* n = 4: the square is the minimizer
Proof: A sequence of three Steiner symmetrizations
transforms any quadrilateral into a rectangle.

* n > 5: (almost) nothing is known

al

@ Steiner symmetrization does not work: the number of
sides may increase!

25

photo: [Henrot, Extremum problems...]
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Various works on the subject

Numerical evidence:

e [Antunes, Freitas, 06]: derivative free - compute A; on many polygons

e [Bogosel, PhD thesis, 15]: gradient algorithm, confirmation for n < 15.

e [Dominguez, Nigam, Shahriari, 17]: stochastic optimization, confirmation for n =5
Theory:

e [Fragala, Velichkov, 19]: optimality conditions - different proof for n = 3

e [Laurain, 19]: second shape derivative on polygons, Hessian matrix
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Numerics in Shape Optimization

i Q
g S

Engineering: improve a given shape

Theory: give hints for new theoretical ideas

Prove something:

Easy: show that a shape is not optimal! Find a counterexample.
Hard: show that a given shape is optimal!
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© Hybrid proof strategy



Derivatives

* a symmetric matrix A is positive definite if all its eigenvalues are positive

Optimality conditions again

If V£(z*) =0 and D?f(z*) = <%aj;j> is positive definite then z* is a local minimum

* We have a function depending on 2n variables (vertex coordinates).
* compute the first and second derivatives of

A (205 Y0, T1, Y1y ooy Tn—1, Yn—1)-

* not straightforward:

Coords. — Shape — PDE — A\
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Sensitivity analysis: shape derivatives

* objective: J: P+ |P|A\(P) (scale invariant) ‘

x A simple = J is smooth! [Henrot, Pierre] @ @

AN

* J((I+0)()) = J(2) + J'()(0) + o([10]])

* Standard form: under regularity assumptions we can write J'(Q)(6) = [,,f 6 -n
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Shape derivatives: simple eigenvalues

* a simple eigenvalue A is differentiable. If u is an associated normalized eigenfunction:

X(Q)(G):—/m (gz>29~n:—/8g|Vu|29-n

x the formula holds when u € H?(Q2), for example when § is convex |Grisvard]
* second shape derivative: formulas are known but require additional regularity
assumptions on 2, which are not verified by polygons

Key Idea!

* [Laurain, 19]: do not use the standard form: less regularity is needed

N(Q)(0) = /Qsﬁ : DO with S} = [|Vu|? — \(Q)u?]Id —2Vu ® Vu

* also see [Henrot Pierre, Shape variation and optimization, Section 5.9.7]

Beniamin BOGOSEL Shape Optimization: Theory and Numerics 22/33



Second Fréchet shape derivative

* computing the Fréchet derivative w.r.t. £ we obtain (after some long computations...)

N(Q)(0,6) = | KMo,

@06 = | 0.9

with

KA(8,€) = —2Va(B) - Va(€) + 20(Q)u(0)iu(€) 4+ 87 : (DO div € + DE div 6)

+ (= Vul® + Mu?) (div Ediv e + DT : D)
+2(DODE 4+ DEDO 4+ DEDHT)Vu - Vu
—[N(Q)(0) div € + X (Q)(€) div 0] u®.

where () and 4(§) are derivatives of u in directions 6 and &.

* We obtained a new formula valid for Lipschitz domains
* replace 6, £ with polygonal perturbations to obtain the gradient and Hessian.
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Theoretical dead end

@ Regular n-gon: explicit Hessian depending on the solution of n + 1 PDEs

4 eigenvalues are zero: corresponding to rigid motions and scalings

Explicit eigenvalues depending on 3 PDEs

o Formulas are so complex that we did not manage to prove theoretically that the
eigenvalues are positive!
* Goal: if the remaining 2n — 4 Hessian eigenvalues are strictly positive then local
minimality is proved.
* When theory doesn’t help, turn to numerics!
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General proof strategy

Given f : R? - R:

z* is a minimizer of f on R? l

Strategy:

Prove that z* is a local minimizer

Find an explicit neighborhood of * where local minimality occurs
Prove that points far away from z* are not minimizers

Prove that if f(z) > f(2*) + ¢ then f(x) > f(z*) in a neighborhood of
Use a finite number of numerical computations to conclude.

G o

To obtain a proof all numerical computations need to have certified error bounds!
Machine errors need to be accounted for: interval arithmetics! J
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@ Numerical computations



Error accumulation

* floating point arithmetic is used in numerical analysis software
* Using 15 digit precision

5.00000000000002 + 6.00000000000003 = 11.0000000000000

* We make an error equal to 5 x 10714, Small, but not zero.

* Patriot missile failure: time was counted in 10ths of seconds: 1/10 not
representable exactly in binary. After 100 hours the representation error was 0.342
seconds! Scud missile travels 1.5km/s!
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Rigorous Computer Arithmetic

* the result of a numerical computation is not exact: information is lost

Interval arithmetics

* A floating point number is replaced by an interval.

* The output of a sequence of interval operations is an interval guaranteed to contain the
exact result

* Specific upwards/downwards rounding procedures are used

* Specialized interval arithmetic software exist: Intlab (Matlab), Interval Arithmetic
(Julia), etc.

Examples:

[2.99,3.01] 4+ [0.99,1.01] = [3.98,4.02]
[2.99,3.01] x [0.99,1.01] = [2.9601, 3.0401]
[0.99,1.01]/[2.99, 3.01] = [0.3289,0.3378]
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Finite elements method

Triangulation, variational formulation, linear system/eigenvalue problem:

—Au= f,uc H)(Q) vs /

Vay, - Vo, = / fron, Yo, € VP C HY(Q)
Q Q

* discretization errors: continuous vs discrete solutions: ||u — up||

Nobody worries about this

* exact discrete solutions vs solutions obtained via iterative algorithms
* floating point arithmetic errors: meshing, assembly
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Explicit error estimates for the Laplacian eigenvalues

* —Au = du, u € H}(Q), Q polygon
* piecewise linear finite elements

Explicit a priori error estimates [Liu, Oishi, 13]

o |\ =\ < C1h?
(] Hu — uhHL2 S 02h2
() HVU—VuhHLQ < Cgh

@ Our contribution: eigenvalues of the Hessian have estimates with error C’vhl_z'y,
v€(0,1/2), C, = o0 as v — 0.

where C1, Cq, C3, C,, are explicit for a given mesh.

* easy to see how to choose h in order to achieve a desired precision

high precision — small h — big discrete linear systems — bad control of machine errors )
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Local minimality — regular pentagon

* Regular pentagon of radius 1: h = 10~%, approx 250 million d.o.f

* FreeFEM using 200 processors: Cholesky cluster—Institut Polytechnique Paris

* explicit estimates—intervals containing the exact result: ¢ € [g;, — C'qhk, qn + C'qhk]
* INTLAB gives the bounds for the Hessian eigenvalues

* we do not control machine errors in the FEM computations! (future work)

% such errors are of size O(ch™?), e = 2.2 x 10715: in our work ~ 1078

* recall that four eigenvalues are zero!

Pentagon
Eigenvalue | lower bound | upper bound | multiplicity
2.568803 2.359297 2.784816 2
8.015038 7.558395 8.460722 2
13.458443 13.012758 13.915086 2
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Computations of optimal size

h d.o.f. optimal h d.o.f

Pentagon | 10~* | 250 025 001 | 9.8e-4 ~ 2.6 million
Hexagon 10~* | 300 030 001 4.2e-4 ~ 17 million
Heptagon | 10~ | 350 035 001 1.9e-4 ~ 97 million
Octagon 10~% | 400 040 001 1.35e-4 ~~ 220 million

* improving the theoretical estimates should further decrease the size of the
computational problems

* Local minimality+Some Theory = Explicit local-minimality neighborhood
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Finalize the proof

Theorem. Given n > 3, a finite number of numerical computations solve the conjecture.

Sig Sis

=S,

3

sS;

]

aq aj aq ap a aj

* First 2 pictures: lower bound for area and eigenvalue

* if current lower bound for A;(P)|P| is not good enough, divide the squares sides in half
and consider all combinations recursively

* if the recursion does not end we converge to a counterexample!

* Third picture: example of validation of a (really small) region: 262144 computations
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Conclusion

Preprint: [Bogosel, Bucur, On the polygonal Faber-Krahn inequality, March 2022]

o We propose a new hybrid proof strategy for proving this classical conjecture.
o Local minimality: almost done, with the help of numerical computations.

e Validated numerical computations open the way to new mathematical results
unattainable with traditional methods!
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