
SOLVING LARGE CUMULATIVE
SCHEDULING PROBLEMS

ARNAUD LETORT,1 NICOLAS BELDICEANU,1 AND MATS CARLSSON2

arnaud.letort@mines-nantes.fr, nicolas.beldiceanu@mines-nantes.fr, matsc@sics.se

1EMN, TASC (CNRS/INRIA)
2SICS

APRIL 16, 2013 (PGMO SEMINAR)

MOTIVATIONS

•  Need to handle large scale problems.

[Panel of the Future of CP 2011]
•  (Multi-dimensional) bin-packing problems, in the context of

cloud computing.

[Panel of the Future of CP 2011], [2012 Roadef Challenge]
•  Existing papers usually leave open the scalability issue.

•  Time-Table constraint is a good candidate.

[Baptiste 2006, Samos] time-tabling used in ILOG Scheduler for
scalability purpose

[Vilim, 2011 CPAIOR]

OUTLINE

The cumulative Constraint

A Critical Analysis of the [CP2001] Sweep Algorithm

The Dynamic Sweep Algorithm (one cumulative)

The Dynamic Sweep Algorithm (several cumulative +
precedence)

Evaluation

Conclusion

THE CUMULATIVE CONSTRAINT

OUTLINE

The cumulative Constraint

A Critical Analysis of the [CP2001] Sweep Algorithm
•  Principle
•  Illustration
•  4 Weaknesses

The Dynamic Sweep Algorithm (one cumulative)

The Dynamic Sweep Algorithm (several cumulative + precedence)

Evaluation

Conclusion

A CRITICAL ANALYSIS OF THE [CP2001]
SWEEP ALGORITHM

(OVERVIEW)

The sweep-line “jumps” from event to event in order to build the
cumulated profile and to perform checks and pruning.

This task cannot overlap [2,4)

This task cannot start on [1,4)

A CRITICAL ANALYSIS OF THE [CP2001]
SWEEP ALGORITHM

(PRINCIPLE: COMPULSORY PARTS)

Compulsory Part : the
intersection of all the feasible
instances of a task.

Cumulated Profile: the union of all
the compulsory parts.

A CRITICAL ANALYSIS OF THE [CP2001]
SWEEP ALGORITHM
(PRINCIPLE: EVENTS)

Event : a potential change of the height of the cumulated profile.
 (i.e. start and end of compulsory part)

A CRITICAL ANALYSIS OF THE [CP2001]
SWEEP ALGORITHM

(PRINCIPLE)

1.  All events on the current sweep-line position are read (amount
of available resource is updated).

2.  The current and the next sweep-line positions define a sweep
interval.

3.  Scans all tasks that overlap the sweep interval. If the height of
a task is greater than the available resource, an interval is
removed from the start of the task.

A CRITICAL ANALYSIS OF THE [CP2001]
SWEEP ALGORITHM

(ILLUSTRATION: INITIAL PROBLEM)

A CRITICAL ANALYSIS OF THE [CP2001]
SWEEP ALGORITHM

(ILLUSTRATION: AFTER A FOURTH SWEEP)

After 4 sweeps

A CRITICAL ANALYSIS OF THE [CP2001]
SWEEP ALGORITHM

(4 WEAKNESSES)

1.  Too static:

Does not take into account the potential increase of the cumulated
profile during a single sweep (see previous example).

2.  Often reaches its worst time complexity:

It needs to systematically re-scan all tasks that overlap the current
sweep-line position to perform pruning. (O(n2))

3.  Creates holes in the domains:

A variable cannot just be compactly represented by its min/max
values.

4.  Does not take advantage of the bin-packing:

The worst-case time complexity is left unchanged and is often
reached.

OUTLINE

The cumulative Constraint

A Critical Analysis of the [CP2001] Sweep Algorithm

The Dynamic Sweep Algorithm (one cumulative)
•  Principle
•  Illustration
•  Property and Complexity
•  Greedy Mode

The Dynamic Sweep Algorithm (several cumulative + precedence)

Evaluation

Conclusion

THE DYNAMIC SWEEP ALGORITHM
(PRINCIPLE)

1.  A Dynamic sweep based algorithm:
It can directly take into account the increase of the cumulated profile during
a single sweep.

2.  A “good” average time complexity:
Essential in order to handle large instances.

3.  Does not create holes in domains:
A variable can be compactly represented by its min/max values.

4.  Takes advantage of the bin-packing:
A better worst-case time complexity than for the cumulative.

THE DYNAMIC SWEEP ALGORITHM
(PRINCIPLE)

•  Deal with domain bounds. [CP2012]
(Creates holes in the domains. [CP2001])

•  Filter min and max values in two distinct sweep stages:
sweep_min and sweep_max, speeds up the convergence
to the fixpoint. [CP2012]

•  New dynamic and conditional events [CP2012]
(Too static [CP2001])

•  Use dedicated data structures. [CP2012]
(Often reaches its worst time complexity [CP2001])

THE DYNAMIC SWEEP ALGORITHM
(PRINCIPLE: NEW EVENTS)

•  Event related to the end of the compulsory part of a task is
now dynamic.

•  A conditional event is generated for each task initially
without compulsory part.

The adjustment of the earliest start of the task can induce the
creation of a compulsory part.

The conditional event is transformed into 2 events reflecting
the new compulsory part.

THE DYNAMIC SWEEP ALGORITHM
(PRINCIPLE: DATA STRUCTURES)

To partially avoid rescanning of all tasks:

•  A heap hconflict storing tasks in conflict with the current
sweep interval. Tasks are ordered by increasing height.

•  A heap hcheck storing tasks not in conflict on the current
sweep interval and for which the earliest start is not yet
found. Tasks are ordered by decreasing height.

THE DYNAMIC SWEEP ALGORITHM
(ILLUSTRATION)

sweep interval = [0,1)
available resource = 2

h1 (=3) is greater than the available
resource (=2).

t1 is added into hconflict.

THE DYNAMIC SWEEP ALGORITHM
(ILLUSTRATION)

sweep interval = [1,2)
available resource = 5

Top task of hconflict (t1) is not greater than
the available resource. Consequently t1 is
removed from hconflict and added into hcheck.

Earliest start of t1 is adjusted to 1.
Its conditional event is transformed into
2 events reflecting its new compulsory part.

THE DYNAMIC SWEEP ALGORITHM
(ILLUSTRATION)

sweep interval = [2,3)
available resource = 2

h2 (=3) is greater than the available
resource (=2).

t2 is added into hconflict.

THE DYNAMIC SWEEP ALGORITHM
(ILLUSTRATION)

sweep interval = [3,4)
available resource = 5

Top task of hconflict (t2) is not greater than
the available resource. Consequently t2 is
removed from hconflict and added into hcheck.

Earliest start of t2 is adjusted to 3.
Event related to its end of compulsory part
is pushed from 5 to 6.

THE DYNAMIC SWEEP ALGORITHM
(ILLUSTRATION)

sweep interval = [4,5)
available resource = 2

Nothing to do.

THE DYNAMIC SWEEP ALGORITHM
(ILLUSTRATION)

sweep interval = [5,6)
available resource = 2

h3 (=3) is greater than the available
resource (=2).

t3 is added into hconflict.

THE DYNAMIC SWEEP ALGORITHM
(ILLUSTRATION)

sweep interval = [6,7)
available resource = 5

Top task of hconflict (t3) is not greater than
the available resource. Consequently t3 is
removed from hconflict.

Earliest start of t3 is adjusted to 6.
Nothing else to do.

THE DYNAMIC SWEEP ALGORITHM
(PROPERTY AND COMPLEXITY)

•  A worst-case time complexity of O(n2 log n) where n is the
number of tasks.
There is a variant with a worst-case time complexity of O(n2),
but the O(n2 log n) version scales better.

•  Property after a call to sweep_min:

For any task t in T, one can schedule t at its
earliest start without exceeding the resource
limit wrt. the cumulated profile of T\{t}.

THE DYNAMIC SWEEP ALGORITHM
(GREEDY MODE USING FILTERING)

Why ?

To handle larger (10 million tasks) instances in a CP solver.
How ?

It reuses the sweep_min part but directly fixes the start of the
task rather than adjusting it. Then, the sweep-line is reset to
this start and the process continues until all tasks get fixed or
a resource overflow occurs.

OUTLINE

The cumulative Constraint

A Critical Analysis of the [CP2001] Sweep Algorithm

The Dynamic Sweep Algorithm (one cumulative)

The Dynamic Sweep Algorithm (several cumulative + precedence)

Evaluation

Conclusion

KEY IDEAS

Handle all cumulative and precedence in one pass (adjusting min)

Reuse the idea used just for a set of precedence (topological ordering)
but also consider the cumulative constraints while propagating

Each constraint is not propagated in isolation (i.e. independently from
the other) but gradually

1. Sort the variables wrt their min,

2. Propagate all constraints just on the first variable (unless its min
increases and it is not the first variable anymore)

3. Discard first variable and continue …

EVENTS TYPES

(SCP,t,latest start): Start of Compulsory part (even if no CP)

(ECPD,t,earliest end): End of Compulsory part (only if CP)

(PR,t,earliest start): Pruning (only if not fixed)

(RS,t,earliest end): Release Successors (at least one successor)

 prevent the earliest starts of the successor of t

 from being adjusted before the final earliest start
 of task t has been determined

OUTLINE

The cumulative Constraint

A Critical Analysis of the [CP2001] Sweep Algorithm

The Dynamic Sweep Algorithm (one cumulative)

The Dynamic Sweep Algorithm (several cumulative + precedence)

Evaluation

Conclusion

EVALUATION

•  Random instances with a density close to 0.7.
•  A speedup increasing with the number of tasks.
•  The dynamic is more robust than the 2001 sweep wrt. different heuristics.
•  The greedy mode could handle:

1 million tasks in 12 minutes
 up to 107 tasks in ~8h (swap).

Cumulative Bin-Packing

OUTLINE

The cumulative Constraint

A Critical Analysis of the [CP2001] Sweep Algorithm

The Dynamic Sweep Algorithm (one cumulative)

The Dynamic Sweep Algorithm (several cumulative + precedence)

Evaluation

Conclusion

CONCLUSION

•  a lean sweep based filtering algorithm

•  dynamically handle creation/extension of CP

•  faster and more scalable than the 2001 sweep

•  handle up to 10 million tasks in greedy mode.
 handle up to 1 million tasks with 2 millions
precedences and 64 resources in greedy mode.

MORE INFORMATION

CP 2012 paper:
One single cumulative constraint,
LNCS vol. 7514, pp. 439-454

CPAIOR 2013 paper:
several cumulative constraints
Available at http://www.cis.cornell.edu/ics/cpaior2013/papers.php

Technical report (April 2013)
Several cumulative + precedence constraints
Available at http://soda.swedish-ict.se/5504/

