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Que faire de son temps 7



Travailler et jouer!

PierRrRe-NOEL

GIRAUD

DU PAIN ET DES JEUX

Une économie politique
des usages du temps
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Faire des maths, bon sang!|



Mais oui! Les maths ménent a tout!

ALEXANDRE ROBICQUET
ARTIFICIAL INTELLIGENCE RESEARCHER




Et un mathématicien, ca fait
quoi 7



Exemples de défis intellectuels, esthétiques...
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"Travailler jusqu'a I'épuisement total, mais pas plus!" (M.
Talagrand)

Démontrer des théorémes

Construire des preuves (trés) techniques

Rechercher le beau (une "belle" preuve, un "joli" probléme)
Raconter une histoire

Servir les autres (mathématiques, sciences, technologies,
société)

v



Et cet exposé? 77



Les personnages principaux

Pierre-Simon de Laplace (1749-1827)  Vladimir Vapnik (1936-...)



Du coté de Laplace



La méthode de Laplace (1/2)

» Soit un compact K C RY et deux fonctions g, f : K = R
telles que, Vt € R,

Z(t) :/ f(x)e 8™ dx est bien définie.
K

» L'approximation (basique) de Laplace fournit un équivalent de
Z(t) quand t — 400

« d/2
I(t) ~ f(X ) <27T) e—tg(x*)
detg”(x*) \ t

sous les hypothéses suivantes :

> f est continue et g est C2 sur K
» g a un minimum global strict x* dans |'intérieur de K
> f(x*) #0.



La méthode de Laplace (2/2)

» Schéma de preuve :
» On peut supposer : g(x*) =0, g”’(x*) =Id et x* =0
» Développement de Taylor a I'ordre 2 de g
» Changement de variable :

h(x) = (g(x)/IIx[*)I{x # 0} + (1/2)I{x = 0}

» Le résultat découle du théoréme de convergence dominée et de

la formule :
1
/ exp (uTu> du = (27)9/?
e 2

» Exemple : formule de Stirling

(o9} 2 n
nl =T(n+1) :/ x"e Xdx ~ n"t14/ Me=n — (ﬁ> 2mwn
0 n e



En probabilités : fonction génératrice des moments

» Soit Z une variable aléatoire réelle de densité f absolument
continue par rapport a la mesure de Lebesgue, la fonction
génératrice des moments est :

M(t) = E(e*) = / e“f(z) dz

R
pour tout t tel que l'intégrale existe.

» Propriétés de base :

» La fonction M caractérise la loi de Z.
» Si 0 est dans l'intérieur du domaine de définition de M, alors :
M) (0) = E(Z*) (moment d’ordre k)



Bornes célébres sur la fonction génératrice des moments

» Cas de variables aléatoires bornées (régime sous-gaussien) :
soit P(Z € [a,b]) =1, E(Z) = 0 alors

2(h _ 2)2
E(etz)gexp<t(b83)>,Vt>0

» Cas de variables aléatoires bornées avec variance explicite
(régime poissonien) : soit P(|Z| <c) =1, E(Z) =0et
E(Z2) = o2 alors

2
E(e*) < exp (;(etc -1- tc)) , V>0



De Laplace aux voitures sans
conducteur



Détection de piéton dans les images

Positive training data

(92,10,...) fea

Space of images
(on each axis read a pixel value)



Détection de piéton dans les images

A function

(or decision rule)



Formalisation du probléme

» Pour démontrer la capacité de généralisation de la régle de
décision f prise dans une classe F, on doit assurer la propriété
suivante :

sup f(Z (f(2))| —0
a2 )
ou Z,Zy,...,Zysont IID de loi P et Ep(f(Z)) = [ f(z)dP(z2)
» De maniére plus générale, on se pose la question de la
convergence uniforme de la loi empirique vers la *vraie* loi :

sup |P,(f) — P(f)| £ 0
feF

1< .
ol P, =— g 0z et 0z mesure de Dirac
n
=



Loi des grands nombres

» Convergence en probabilité (définition) - Une suite de variables
aléatoires (Up)n,>1 converge en probabilité vers une variable
aléatoire U si :

Ve > 0, ILm P(|Up—U|>¢e)=0

» Loi des grands nombres (version faible) - Supposons f bornée
et Z,71,...,2Z, D tels que Ep(Z?) < oo, alors :

LS Kz e (r(2))
i=1

» Borne de la réunion : soit A et B deux événements, alors

P(AU B) = P(A) + P(B) — P(AN B) < P(A) + P(B)



Inégalité de Hoeffding

» Consider U, Uy, ..., U, IID over [0,1]. Then, for any € >0 :

P <’11 z”: Ui —E(U) > 6) < exp(—2ne?)
i=1

» Proof argument : Chernoff's bounding method

P (iiU,-—E(U) > t)
i=1

< exp (— sup (nst — nlogE(es(U—E(U))))>

s>0



Loi uniforme des grands nombres

» Si F est de cardinal fini :
on a (borne-de-la-réunion + inégalité de Hoeffding) : Ve > 0

(rpea% fo (f(2)) >5)

< |F| maxP (

1
maxP | |~ > f(Z) —Ep(f(2))

i=1

> 5) < 2|F| exp(—2ne?)

» Si F est dénombrable : I'argument s'effondre.

» Question : comment quantifier la taille d'une classe
fonctionnelle ?



Selon Kolmogorov...

» Soit une classe de fonctions F muni d'une métrique || - ||

» Un e-recouvrement 7 est un ensemble d’éléments de F tels
que Vf € F il existe un élément h € T tel que ||h—f|| <e

P

N

» Le nombre de couverture N(e) est le cardinal du plus petit
e-recouvrement de F



Lois uniformes des grands nombres sous contréle métrique

» Si les fonctions de F sont uniformément bornées par M, on a :

. (flé]pr“)”(f) - P(Al > E) <N (8%) exp <_2n/\€/122>

[D. Pollard (1984)]

» Si N(g) ~e " avec k > 0 (e.g. k = d si F est paramétré par
compact dans R?), alors on a :

sup |P,(f) — P(f)| £ 0
feF

» Mais hypothéses (trop) abstraites et contraignantes, vitesses
peu explicites...



Du coté de Vapnik



Dénombrement dans un ensemble infini

>

>

Soit S C RY avec |S| < 400 et C une famille de
sous-ensembles de R¥.

On dit que C pulvérise S si pour tout S’ C S, il existe C € C
tel que ' =SnNC.

La dimension de Vapnik-Chervonenkis (VC) de C est définie par
V :=sup{|S| : S est pulvérisé par C}
Par conséquent, pour tout S, tel que |[S| < V, on a:
{SncC:Ccecy =2

Lemme de Sauer-Shelah : soit C de VC dimension V

%4
. n v
S(C,n):SEnET(:nHSﬂC. C e C} SkZ()(k) <(n+1)



VC dimension des demi-plans




Exemples de calculs exacts de VC dimension

» Demi-espaces dans R : V =d +1

> Rectangles de cotés paralléles aux axes dans R? : V =4
» Tous les rectangles dans R? : V =7

» Triangles dans R? : V =7

» Polygones Convexes dans R? : V = 400




Le nombre de paramétres ne quantifie pas la complexité !

» Ensemble de fonctions indicatrices paramétrées par un seul
paramétre :

h(x) = I{x : sin(wx) > 0} , where w € [0, 27)

» La VC dimension de I'ensemble est infinie! En prenant

I'ensemble de points {x; = 2710~ : j=1,...,n} eten
considérant toutes les labellisations binaires possibles
{¥1,..-,¥Yn} le choix du paramétre

On(y1s---1¥n) = <1+Z<

montre qu’on peut pulvériser cet ensemble.

“)w)




Lois uniformes des grands nombres sous controle
combinatoire

» Si les fonctions de F sont des fonctions indicatrices indexées
par une classe d'ensembles C de VC dimension V/, on a :

E (sup Po() - PO > <) < s(C.mewr (~ 15 )
<8+ )" e (-3 )

[ Vapnik, Chervonenkis (1968) |

» On en déduit avec probabilité au moins 1 — §

128V log(n + 1) N \/ 128log(8/6)
n n

sup [P+(C) ~ P(C) <

» Super! mais peut mieux faire...



Vitesses dans les lois uniformes des grands nombres

En travaillant un peu mieux...

» Inégalité de concentration de Mc Diarmid (plus fort que
Hoeffding !)

» Inégalité de Dudley (basée sur la technique du chainage)

... on obtient, avec probabilité au moins 1 — ¢ :

1 n
sup | ; f(Z;) —Ep(f(2))

Sl92\/(3+|og2)v+2\/2|og(2/5)

n n

» On peut alors fournir un intervalle de confiance sur la
performance en moyenne future d'un algorithme
d'apprentissage qui a appris a détecter des piétons sur un
échantillon de taille finie dés lors que sa VC dimension est finie.

» On a fini ? Probléme résolu ?



Commentaires

> La question du biais. Les garanties fournies portent sur les
fluctuations dues au caractére aléatoire des données
d'apprentissage (erreur d'estimation) mais quid de la capacité
de représentation de la famille C de la meilleure fonction de
décision (erreur d'approximation) ?

Question ouverte : Réconcilier les bornes d’erreurs en
estimation et approximation pour le probléme de classification.

> Calibration de la complexité. Est-ce que la VC dimension
est la notion de complexité pertinente ? Quels conseils aux
praticiens ?

Question ouverte : Comment calibrer a priori la complexité de
I'apprentissage 7 Intervalles de confiance numériquement
plausibles ?



Une notion géométrique de la complexité

» Soit deux échantillons de variables aléatoires indépendants |'un
de I'autre : X1,..., X, lID sur R? et un échantillon ¢, ..., ¢,
[ID telles que P(e; = 1) = P(e; = —1) = 1/2.

» La complexité (empirique) de Rademacher d'une classe de

functions F :
) Xt, .oy X, )

Ro(F sup — eif

7= (fe]—‘ n Z

» Bornes sur la complexité de Rademacher :
» Classe linéaire a coefficients bornés par M : O(M/+/n)
» Classe de VC dimension finie : O(1/V/n)

» Enveloppe convexe d'une classe de VC dimension finie :

O(/V/n)! 11




Ou Laplace rencontre Vapnik



Retour a Laplace : des vitesses spécifiques

» Soit Z une variable aléatoire suivant une loi de Bernoulli de
paramétre p € (0,1)

E(e') = pe! + (1 — p), Vt >0

» Méthode de Chernoff appliquée a la moyenne empirique :
1 n
P (n lei —p> €> <exp(—nH(p+e,p))
=

ou H(q, p) = qlog(q/p) + (1 — q)log((1 — q)/(1 - p))
> Cette vitesse est asymptotiquement exacte en échelle
logarithmique (Théoréme de Cramer) et on a:

1
SH(p+e,p)=+o0

Ve >0, lim
p—1le¢e



Retour & Vapnik : approcher la complexité effective

» Conjecture. Soit C de VC dimension finie et P classe de
mesures sur B(RY)

sup P <sup |Pn(C) — P(C)| > E)
PeP ceC

~ K(ne?)* "2 exp (—nH(p* +&,p") A H(p* — &,p"))

ou p* = arg min lg —1/2]
q=P(C) : CeC,PeP
» |dée : valider empiriquement cette conjecture (avant de la
démontrer...)
» Challenges numériques méme dans un cas trivial (2D, loi
uniforme, demi-espaces) :
» Simulation d'événements rares par échantillonnage préférentiel
» Calcul du supremum par dualité projective



Calculs de VC dimension effective

Digit | degree Vig Vers
0 3 ~ 107 530
1 7 ~ 10te 101
2 3 ~ 108 842
3 3 ~ 109 1157
| | ~ 107 962
5 3 ~ 108 1090
[§] 4 ~ 107 626
7 B ~ 102 | 330
N | ~ 107 1145
q 5 ~ 10" | 1226

Vapnik, 1998

Voir aussi :

q V A K | oK/K
1.0 | 1.00 [ 0.22 1 0.95 | 23%
0.9 1099 020097 | 23%
0.5 10499 | 0.14 | 0.95 15%
0.7 1 1.03 | 0.14 | 0.90 16%
0.6 | 1.06 | 0.18 | 0.80 | 20%
0.5 1 098 | 0.14 | 0.67 16%
0.4 0.78 | 0.09 ] 0.53 0%
0.3 1 0.68 | 0.06 | 0.2 It
0.2 1 0.62 | 0.04 | 0.33 5%
0.1 1 057 | 0.04 | 0.23 1%

Vayatis, 2000

Vapnik-Levin-LeCun, 1994




Conclusions et messages personnels

> La réponse a la conjecture est peut-étre du cété de la méthode
de Laplace

» Exemple de réflexions mathématiques a partir de problémes
concrets

» Utilisation de la simulation numérique pour tenter d'invalider
des conjectures

» Toutes les sciences seront mathématiques ou ne seront pas!

» Remerciements chaleureux aux personnages principaux de
*mon* histoire : Robert, Pascal, Gabor, Sacha, Jean-Michel



Pour en savoir plus : quelques lectures saines

>

>

P. Barbe / Approximation of integrals over asymptotic sets
with applications to statistics and probability / ArXiv, 2003

K. W. Breitung / Asymptotic approximations for probability
integrals / Springer, 1994

R. van Handel / Probability in high dimension / Princeton
preprint, 2016

R. Vershynin / High dimensional probability / Cambridge
University Press, 2018

S. Boucheron, G. Lugosi, P. Massart / Concentration
Inequalities : A Nonasymptotic Theory of Independence /
Oxford University Press, 2016

V. Vapnik / Statistical Learning Theory / Wiley, 1998

F. Bach / Learning Theory from First Principles / MIT Press,
2024



Backup



Plus fort que Hoeffding! la concentration

[McDiarmid's inequality] Consider Zi,...,Z, lID. Under a
regularity assumption on the function f called the bounded
difference assumption with constant c/n, we have, for any t > 0

P (f(Z,...,2Zn) —E(f(Z1,...,2Z,)) > t) < exp(—2nt?/c?)
and

P(f(Z1,...,2Z0) —E(f(Z1,...,2Zn)) < —t) < exp (—2nt*/c?)

» Here the average of 11D random variables is replaced by a
general function of these |ID variables.

» Take-home message : Independence is more
important/general than averaging



Bounded difference assumption

» Consider a function f of n variables. We say that f has
bounded differences if the variations along each variables are
uniformly bounded.

» Here we need to have : for some ¢ > 0

sup  |f(z1,...,2n) — F(21,- -1 2i1,2,Zis1, -, 2n)| <
Z1,0.y2n,2]

S0



