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Maths en Herbe, IHES



Que faire de son temps ?



Travailler et jouer !



Faire des maths, bon sang !



Mais oui ! Les maths mènent à tout !



Et un mathématicien, ça fait
quoi ?



Exemples de défis intellectuels, esthétiques...

▶ "Travailler jusqu’à l’épuisement total, mais pas plus !" (M.
Talagrand)

▶ Démontrer des théorèmes
▶ Construire des preuves (très) techniques
▶ Rechercher le beau (une "belle" preuve, un "joli" problème)
▶ Raconter une histoire
▶ Servir les autres (mathématiques, sciences, technologies,

société)
▶ ...



Et cet exposé ? ? ?



Les personnages principaux

Pierre-Simon de Laplace (1749-1827) Vladimir Vapnik (1936-...)



Du côté de Laplace



La méthode de Laplace (1/2)

▶ Soit un compact K ⊂ Rd et deux fonctions g , f : K → R
telles que, ∀t ∈ R,

I(t) =
∫
K
f (x)e−tg(x)dx est bien définie.

▶ L’approximation (basique) de Laplace fournit un équivalent de
I(t) quand t → +∞

I(t) ∼ f (x∗)√
det g ′′(x∗)

(
2π
t

)d/2

e−tg(x∗)

sous les hypothèses suivantes :
▶ f est continue et g est C 2 sur K
▶ g a un minimum global strict x∗ dans l’intérieur de K
▶ f (x∗) ̸= 0.



La méthode de Laplace (2/2)

▶ Schéma de preuve :
▶ On peut supposer : g(x∗) = 0, g ′′(x∗) = Id et x∗ = 0
▶ Développement de Taylor à l’ordre 2 de g
▶ Changement de variable :

h(x) = (g(x)/∥x∥2)I{x ̸= 0}+ (1/2)I{x = 0}

▶ Le résultat découle du théorème de convergence dominée et de
la formule : ∫

Rd

exp

(
−1

2
uTu

)
du = (2π)d/2

▶ Exemple : formule de Stirling

n! = Γ(n+1) =
∫ ∞

0
xne−xdx ∼ nn+1

√
2π
n
e−n =

(n
e

)n √
2πn



En probabilités : fonction génératrice des moments

▶ Soit Z une variable aléatoire réelle de densité f absolument
continue par rapport à la mesure de Lebesgue, la fonction
génératrice des moments est :

M(t) = E(etZ ) =
∫
R
etz f (z) dz

pour tout t tel que l’intégrale existe.

▶ Propriétés de base :
▶ La fonction M caractérise la loi de Z .
▶ Si 0 est dans l’intérieur du domaine de définition de M, alors :

M(k)(0) = E(Z k) (moment d’ordre k)



Bornes célèbres sur la fonction génératrice des moments

▶ Cas de variables aléatoires bornées (régime sous-gaussien) :
soit P(Z ∈ [a, b]) = 1, E(Z ) = 0 alors

E(etZ ) ≤ exp

(
t2(b − a)2

8

)
, ∀t > 0

▶ Cas de variables aléatoires bornées avec variance explicite
(régime poissonien) : soit P(|Z | ≤ c) = 1, E(Z ) = 0 et
E(Z 2) = σ2 alors

E(etZ ) ≤ exp

(
σ2

c2 (e
tc − 1 − tc)

)
, ∀t > 0



De Laplace aux voitures sans
conducteur



Détection de piéton dans les images



Détection de piéton dans les images



Formalisation du problème

▶ Pour démontrer la capacité de généralisation de la règle de
décision f prise dans une classe F , on doit assurer la propriété
suivante :

sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

f (Zi )− EP

(
f (Z

)
)

∣∣∣∣∣ P−→ 0

où Z ,Z1, . . . ,Zn sont IID de loi P et EP(f (Z )) =
∫
f (z)dP(z)

▶ De manière plus générale, on se pose la question de la
convergence uniforme de la loi empirique vers la *vraie* loi :

sup
f ∈F

|Pn(f )− P(f )| P−→ 0

où Pn =
1
n

n∑
i=1

δZi
et δZ mesure de Dirac



Loi des grands nombres

▶ Convergence en probabilité (définition) - Une suite de variables
aléatoires (Un)n≥1 converge en probabilité vers une variable
aléatoire U si :

∀ε > 0, lim
n→∞

P(|Un − U| > ε) = 0

▶ Loi des grands nombres (version faible) - Supposons f bornée
et Z ,Z1, . . . ,Zn IID tels que EP(Z

2) < ∞, alors :

1
n

n∑
i=1

f (Zi )
P−→ EP

(
f (Z

)
)

▶ Borne de la réunion : soit A et B deux événements, alors

P(A ∪ B) = P(A) + P(B)− P(A ∩ B) ≤ P(A) + P(B)



Inégalité de Hoeffding

▶ Consider U,U1, . . . ,Un IID over [0, 1]. Then, for any ε > 0 :

P

(
1
n

n∑
i=1

Ui − E(U) > ε

)
≤ exp(−2nε2)

▶ Proof argument : Chernoff’s bounding method

P

(
1
n

n∑
i=1

Ui − E(U) > t

)

≤ exp

(
− sup

s>0

(
nst − n logE

(
es(U−E(U))

)))



Loi uniforme des grands nombres

▶ Si F est de cardinal fini :
on a (borne-de-la-réunion + inégalité de Hoeffding) : ∀ε > 0

P

(
max
f ∈F

∣∣∣∣∣1n
n∑

i=1

f (Zi )− EP

(
f (Z )

)∣∣∣∣∣ > ε

)

≤ |F|max
f ∈F

P

(∣∣∣∣∣1n
n∑

i=1

f (Zi )− EP

(
f (Z )

)∣∣∣∣∣ > ε

)
≤ 2|F| exp(−2nε2)

▶ Si F est dénombrable : l’argument s’effondre.
▶ Question : comment quantifier la taille d’une classe

fonctionnelle ?



Selon Kolmogorov...

▶ Soit une classe de fonctions F muni d’une métrique ∥ · ∥

▶ Un ε-recouvrement T est un ensemble d’éléments de F tels
que ∀f ∈ F il existe un élément h ∈ T tel que ∥h − f ∥ ≤ ε

▶ Le nombre de couverture N(ε) est le cardinal du plus petit
ε-recouvrement de F



Lois uniformes des grands nombres sous contrôle métrique

▶ Si les fonctions de F sont uniformément bornées par M, on a :

P
(
sup
f ∈F

|Pn(f )− P(f )| > ε

)
≤ N

( ε

8M

)
exp

(
− nε2

2M2

)
[D. Pollard (1984)]

▶ Si N(ε) ∼ ε−κ avec κ > 0 (e.g. κ = d si F est paramétré par
compact dans Rd), alors on a :

sup
f ∈F

|Pn(f )− P(f )| P−→ 0

▶ Mais hypothèses (trop) abstraites et contraignantes, vitesses
peu explicites...



Du côté de Vapnik



Dénombrement dans un ensemble infini
▶ Soit S ⊂ Rd avec |S | < +∞ et C une famille de

sous-ensembles de Rd .
▶ On dit que C pulvérise S si pour tout S ′ ⊂ S , il existe C ∈ C

tel que S ′ = S ∩ C .

▶ La dimension de Vapnik-Chervonenkis (VC) de C est définie par

V := sup{|S | : S est pulvérisé par C}

▶ Par conséquent, pour tout S , tel que |S | ≤ V , on a :

|{S ∩ C : C ∈ C}| = 2|S |

▶ Lemme de Sauer-Shelah : soit C de VC dimension V

s(C, n) = max
S : |S |=n

|{S ∩ C : C ∈ C}| ≤
V∑

k=0

(
n

k

)
≤ (n + 1)V



VC dimension des demi-plans



Exemples de calculs exacts de VC dimension

▶ Demi-espaces dans Rd : V = d + 1

▶ Rectangles de côtés parallèles aux axes dans R2 : V = 4

▶ Tous les rectangles dans R2 : V = 7

▶ Triangles dans R2 : V = 7

▶ Polygones Convexes dans R2 : V = +∞



Le nombre de paramètres ne quantifie pas la complexité !
▶ Ensemble de fonctions indicatrices paramétrées par un seul

paramètre :

h(x) = I{x : sin(ωx) > 0} , where ω ∈ [0, 2π)

▶ La VC dimension de l’ensemble est infinie ! En prenant
l’ensemble de points {xj = 2π10−j : j = 1, . . . , n} et en
considérant toutes les labellisations binaires possibles
{y1, . . . , yn}, le choix du paramètre

ω̂n(y1, . . . , yn) =
1
2

(
1 +

n∑
i=1

(
1 − yi

2

)
10i
)

montre qu’on peut pulvériser cet ensemble.



Lois uniformes des grands nombres sous contrôle
combinatoire

▶ Si les fonctions de F sont des fonctions indicatrices indexées
par une classe d’ensembles C de VC dimension V , on a :

P
(
sup
C∈C

|Pn(C )− P(C )| > ε

)
≤ 8s(C, n) exp

(
−nε2

128

)
≤ 8(n + 1)V exp

(
−nε2

128

)
[ Vapnik, Chervonenkis (1968) ]

▶ On en déduit avec probabilité au moins 1 − δ

sup
C∈C

|Pn(C )− P(C )| ≤
√

128V log(n + 1)
n

+

√
128 log(8/δ)

n

▶ Super ! mais peut mieux faire...



Vitesses dans les lois uniformes des grands nombres

En travaillant un peu mieux...
▶ Inégalité de concentration de Mc Diarmid (plus fort que

Hoeffding !)
▶ Inégalité de Dudley (basée sur la technique du chaînage)

... on obtient, avec probabilité au moins 1 − δ :

sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

f (Zi )− EP

(
f (Z )

)∣∣∣∣∣ ≤ 192

√
(3 + log 2)V

n
+2

√
2
log(2/δ)

n

▶ On peut alors fournir un intervalle de confiance sur la
performance en moyenne future d’un algorithme
d’apprentissage qui a appris à détecter des piétons sur un
échantillon de taille finie dès lors que sa VC dimension est finie.

▶ On a fini ? Problème résolu ?



Commentaires

▶ La question du biais. Les garanties fournies portent sur les
fluctuations dues au caractère aléatoire des données
d’apprentissage (erreur d’estimation) mais quid de la capacité
de représentation de la famille C de la meilleure fonction de
décision (erreur d’approximation) ?

Question ouverte : Réconcilier les bornes d’erreurs en
estimation et approximation pour le problème de classification.

▶ Calibration de la complexité. Est-ce que la VC dimension
est la notion de complexité pertinente ? Quels conseils aux
praticiens ?

Question ouverte : Comment calibrer a priori la complexité de
l’apprentissage ? Intervalles de confiance numériquement
plausibles ?



Une notion géométrique de la complexité

▶ Soit deux échantillons de variables aléatoires indépendants l’un
de l’autre : X1, . . . ,Xn IID sur Rd et un échantillon ε1, . . . , εn
IID telles que P(ε1 = 1) = P(ε1 = −1) = 1/2.

▶ La complexité (empirique) de Rademacher d’une classe de
functions F :

R̂n(F) = E

(
sup
f ∈F

1
n

n∑
i=1

εi f (Xi )

∣∣∣∣∣X1, . . . ,Xn

)

▶ Bornes sur la complexité de Rademacher :
▶ Classe linéaire à coefficients bornés par M : O(M/

√
n)

▶ Classe de VC dimension finie : O(
√
V /n)

▶ Enveloppe convexe d’une classe de VC dimension finie :
O(
√
V /n) ! ! !



Où Laplace rencontre Vapnik



Retour à Laplace : des vitesses spécifiques

▶ Soit Z une variable aléatoire suivant une loi de Bernoulli de
paramètre p ∈ (0, 1)

E(etZ ) = pet + (1 − p), ∀t > 0

▶ Méthode de Chernoff appliquée à la moyenne empirique :

P

(
1
n

n∑
i=1

Zi − p > ε

)
≤ exp (−nH(p + ε, p))

où H(q, p) = q log(q/p) + (1 − q) log((1 − q)/(1 − p))

▶ Cette vitesse est asymptotiquement exacte en échelle
logarithmique (Théorème de Crámer) et on a :

∀ε > 0, lim
p→1

1
ε2H(p + ε, p) = +∞



Retour à Vapnik : approcher la complexité effective

▶ Conjecture. Soit C de VC dimension finie et P classe de
mesures sur B(Rd)

sup
P∈P

P
(
sup
C∈C

|Pn(C )− P(C )| > ε

)
≃ K (nε2)v−1/2 exp (−nH(p∗ + ε, p∗) ∧ H(p∗ − ε, p∗))

où p∗ = argmin
q=P(C) : C∈C,P∈P

|q − 1/2|

▶ Idée : valider empiriquement cette conjecture (avant de la
démontrer...)

▶ Challenges numériques même dans un cas trivial (2D, loi
uniforme, demi-espaces) :
▶ Simulation d’événements rares par échantillonnage préférentiel
▶ Calcul du supremum par dualité projective



Calculs de VC dimension effective

Vapnik, 1998 Vayatis, 2000

Voir aussi : Vapnik-Levin-LeCun, 1994



Conclusions et messages personnels

▶ La réponse à la conjecture est peut-être du côté de la méthode
de Laplace

▶ Exemple de réflexions mathématiques à partir de problèmes
concrets

▶ Utilisation de la simulation numérique pour tenter d’invalider
des conjectures

▶ Toutes les sciences seront mathématiques ou ne seront pas !

▶ Remerciements chaleureux aux personnages principaux de
*mon* histoire : Robert, Pascal, Gábor, Sacha, Jean-Michel



Pour en savoir plus : quelques lectures saines

▶ P. Barbe / Approximation of integrals over asymptotic sets
with applications to statistics and probability / ArXiv, 2003

▶ K. W. Breitung / Asymptotic approximations for probability
integrals / Springer, 1994

▶ R. van Handel / Probability in high dimension / Princeton
preprint, 2016

▶ R. Vershynin / High dimensional probability / Cambridge
University Press, 2018

▶ S. Boucheron, G. Lugosi, P. Massart / Concentration
Inequalities : A Nonasymptotic Theory of Independence /
Oxford University Press, 2016

▶ V. Vapnik / Statistical Learning Theory / Wiley, 1998
▶ F. Bach / Learning Theory from First Principles / MIT Press,

2024



Backup



Plus fort que Hoeffding ! la concentration

[McDiarmid’s inequality] Consider Z1, . . . ,Zn IID. Under a
regularity assumption on the function f called the bounded
difference assumption with constant c/n, we have, for any t > 0

P
(
f (Z1, . . . ,Zn)− E

(
f (Z1, . . . ,Zn)

)
> t
)
≤ exp

(
−2nt2/c2)

and

P
(
f (Z1, . . . ,Zn)− E

(
f (Z1, . . . ,Zn)

)
< −t

)
≤ exp

(
−2nt2/c2)

▶ Here the average of IID random variables is replaced by a
general function of these IID variables.

▶ Take-home message : Independence is more
important/general than averaging



Bounded difference assumption

▶ Consider a function f of n variables. We say that f has
bounded differences if the variations along each variables are
uniformly bounded.

▶ Here we need to have : for some c > 0

sup
z1,...,zn,z ′i

|f (z1, . . . , zn)− f (z1, . . . , zi−1, z
′
i , zi+1, . . . , zn)| ≤

c

n


