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Mon parcours

2017-2019 : CPGE MPSI (Lycée Lakanal, Sceaux) - MP*
(Lycée Saint-Louis, Paris)
2019-2020 : L3 - Magistère à Orsay + admission à l’ENS
Paris-Saclay sur second concours
2020-2021 : M1 Hadamard (ENS Paris-Saclay)
2021-2022 : M2 Formation à l’enseignement supérieur +
agrégation externe
2022-2023 : M2 Recherche (M2 de mathématiques
fondamentales à Jussieu)
Depuis 2023 : thèse en théorie des nombres sur le sujet
"Statistiques arithmétiques et points rationnels sur les variétés
algébriques", dirigée par David Harari, Régis de la Bretèche et
Kevin Destagnol. Financement : CDSN.
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Motivations
Soit F ∈ Z[x0, . . . , xn] un polynôme. L’étude des solutions
rationnelles ou entières de l’équation

F (x0, . . . , xn) = 0

est un problème ancien et difficile.

Exemples :
Triplets pythagoriciens : x2 + y2 = z2,
Dernier théorème de Fermat : xn + yn = zn (n ⩾ 3),
Écriture d’un entier comme une valeur prise par un polynôme :
m = F (x0, . . . , xn).

À l’heure actuelle, on ne sait pas caractériser les entiers n qui
peuvent s’écrire comme la somme de trois cubes d’entiers relatifs.
Voir par exemple la vidéo de Numberphile
https://www.youtube.com/watch?v=wymmCdLdPvM.
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Motivations

Plusieurs questions naturelles peuvent alors se poser.
Q1 Étant donnée une telle équation, en existe-t-il au moins une

solution (x0, . . . , xn) dans Qn+1 ou dans Zn+1 ? En cas
d’existence de solution(s), en existe-t-il un nombre fini ou bien
une infinité ?

Q2 Dans le cas où une équation n’a pas de solutions rationnelles,
quelles sont les obstructions à l’existence de telle solutions ?

Q3 Dans le cas où il en existe une infinité, que peut-on dire de
quantitatif ? (cf conjecture de Manin-Peyre)
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Motivations

Q1 En 1900, Hilbert propose 23 problèmes qu’il juge alors
important de résoudre durant le siècle à venir. Le 10ème
problème de Hilbert pose la question de l’existence d’un
algorithme prenant en entrée un polynôme F ∈ Z[x0, . . . , xn]
et renvoyant "oui" si F admet une solution dans Zn+1, "non"
sinon.

En 1970, Matiyasevitch prouve qu’il n’existe pas de tel
algorithme et résout alors ce problème. La question est
toujours ouverte si on remplace Z par Q.

Il s’agit d’un domaine de recherche toujours actif.

5 / 14



Motivations

Q2 Les seuls complétés de Q sont R (pour la valeur absolue
usuelle) et les corps p-adiques Qp (pour |x |p := p−vp(x), p
premier). Comme Q est naturellement inclus dans chacun de
ces corps, il est clair que si une équation diophantienne admet
une solution dans Qn+1, alors elle admet au moins une solution
dans R et dans chaque Qp.

La réciproque est fausse en général (voir le contre-exemple de
Selmer 3x3 + 4y3 + 5z3 = 0 pour les solutions non nulles),
mais si une équation la satisfait on dit qu’elle vérifie le principe
de Hasse. C’est par exemple le cas des coniques (polynômes
homogènes de degré 2) à coefficients rationnels (théorème de
Hasse–Minkowski).

Dans le cas où le principe de Hasse est vérifié, les seules
obstructions à l’existence de solutions rationnelles ou entières
proviennent des solutions réelles ou des solutions modulo p
premier.
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Point de vue géométrique

Rappelons que Pn(Q) désigne le quotient de Qn+1 ∖ {0} par la
relation d’équivalence

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ ∃λ ∈ Q∗, (x0, . . . , xn) = λ(y0, . . . , yn).

La classe de (x0, . . . , xn) est notée [x0 : . . . : xn] et est appelée
point rationnel.

Si F ∈ Z[x0, . . . , xn] est un polynôme homogène, l’équation
F (x0, . . . , xn) = 0 définit alors une variété algébrique projective VF

et ses solutions x ∈ Pn(Q) sont appelées points rationnels de VF .
Dans ce cas, le problème peut donc se reformuler comme l’étude de
l’existence de points rationnels sur certaines variétés algébriques
projectives.
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Statistiques arithmétiques
On se propose d’étudier le problème de l’existence de solution de
façon quantitative en répondant à Q1 en moyenne. Afin de
mesurer la taille/compléxité d’un point y ∈ Pn(Q), on définit sa
hauteur par

H(y) = max(|y0|, . . . , |yn|),
où (y0, . . . , yn) est un représentant de y dans Zn+1 vérifiant
pgcd(y0, . . . , yn) = 1.

Étant donnée une famille d’équations / de variétés

F := {Fy(x) = 0}y∈Pn(Q)

avec Fy ∈ Z[x0, . . . , xk ] homogènes, on peut alors considérer pour
B ⩾ 2 la quantité

N(B;F) := #

{
y ∈ Pn(Q) :

H(y) ⩽ B
∃x ∈ Pk(Q),Fy(x) = 0

}
.

Question : comment se comporte N(B;F) quand B tend vers +∞ ?
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Exemples
Considérons la famille de coniques

C0 := {y0x
2
0 + y1x

2
1 + y2x

2
2 = 0}[y0:y1:y2]∈P2(Q).

En 1990, Serre a obtenu via le grand crible la majoration

N(B; C0) ⩽ C
B3

(logB)3/2

où C > 0 est une constante indépendante de B , prouvant alors
qu’asymptotiquement, 0% des coniques de cette famille
possèdent une solution rationnelle.
Dans les années qui ont suivies, Guo et Hooley ont obtenu
indépendamment une minoration

N(B; C0) ⩾ C ′ B3

(logB)3/2

avec C ′ > 0 une constante indépendante de B .
Ainsi, l’ordre de grandeur de N(B; C0) est B3

(logB)3/2 .
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La conjecture de Loughran-Smeets

En 2016, Loughran et Smeets ont généralisé les travaux de Serre
sur les coniques et ont majoré finement la quantité N(B;F) pour
une large classe de familles de variétés/d’équations F . Ils
obtiennent une majoration de la forme

N(B;F) ⩽ C
Bn+1

(logB)∆(F)

où ∆(F) ⩾ 0 est un invariant dépendant de la géométrie de la
famille F , et où C > 0 est une constante indépendante de B . Ils
conjecturent alors qu’on a en fait, sous de bonnes hypothèses,

N(B;F) ∼
B→+∞

cF
Bn+1

(logB)∆(F)

avec cF > 0 une constante.
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La conjecture de Loughran-Smeets

En 2022, Loughran, Rome et Sofos conjecturent en plus une
formule close pour la constante cF au moyen d’invariants
géométriques associés à la famille F . Ils vérifient alors leur
conjecture dans le cas de la famille C0 et répondent à la question de
Serre (1990) en montrant que

N(B; C0) ∼
B→+∞

c0
B3

(logB)3/2

avec c0 > 0 explicite sous forme d’un produit eulérien.

Le but de ma thèse est d’accroître le nombre de familles F pour
lesquelles on sait estimer N(B;F) afin de tester cette conjecture et
observer ce qu’il se passe quand on s’éloigne un peu du cadre de
Loughran-Smeets.
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Premier résultat

Théorème 1 (Da Silva, 2025)

Si F := (F0,F1,F2) ∈ Z[y0, . . . , yn]
3 avec les Fi homogènes,

irréductibles de même degré d , et avec n "très grand" devant d ,
alors la conjecture de Loughran-Smeets est vérifiée par la famille de
coniques à coefficients polynomiaux

CF := {F0(y)x2
0 + F1(y)x2

1 + F2(y)x2
2 = 0}y∈Pn(Q).

Outil principal : Méthode du cercle, repose sur l’égalité∫ 1

0
e2iπθF (y0,...,yn)dθ =

{
1 si F (y0, . . . , yn) = 0
0 sinon,

que l’on peut alors sommer sur les (y0, . . . , yn) ∈ Zn+1 vérifiant
pgcd(y0, . . . , yn) = 1 et max |yi | ⩽ B.
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Second résultat
Si L est un corps de nombre et si F ∈ Z[s, t] est une forme
quadratique irréductible sur Q, on considère la famille

FL,F := {NL/Q(x) = F (s, t)}(s,t)∈Z2

où NL/Q désigne la norme de L et x désigne un élément de L.

Théorème 2 (Da Silva, 2026 à venir)

Si le groupe de Galois de L est abélien d’ordre D, si L est
suffisamment sympathique (son anneau des entiers est principal), et
si N(B;FL,F ) > 0, alors l’ordre de grandeur de N(B;FL,F ) est

B2

(logB)1−
1
D

si F est irréductible sur L

B2

(logB)1−
2
D

sinon.

Outils : théorie algébrique des nombres, géométrie des nombres
(comptage de points dans des réseaux), théorie analytique des
nombres (crible et formule de Perron). 13 / 14



Merci pour votre attention !
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