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Mon parcours

2017-2019 : CPGE MPSI (Lycée Lakanal, Sceaux) - MP*
(Lycée Saint-Louis, Paris)

2019-2020 : L3 - Magistére a Orsay + admission a I'ENS
Paris-Saclay sur second concours

2020-2021 : M1 Hadamard (ENS Paris-Saclay)
2021-2022 : M2 Formation a |'enseignement supérieur +
agrégation externe

2022-2023 : M2 Recherche (M2 de mathématiques
fondamentales a Jussieu)

Depuis 2023 : thése en théorie des nombres sur le sujet
"Statistiques arithmétiques et points rationnels sur les variétés
algébriques", dirigée par David Harari, Régis de la Bretéche et
Kevin Destagnol. Financement : CDSN.
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Soit F € Z[xp, ..., Xn] un polyndme. L'étude des solutions
rationnelles ou entiéres de |'équation

F(xo,...,xn) =0

est un probléme ancien et difficile.

Exemples

o Triplets pythagoriciens : x? + y? = 22,

@ Dernier théoréme de Fermat : x” +y" = z" (n > 3),

@ Ecriture d'un entier comme une valeur prise par un polynéme :
m= F(xo,...,Xn)

A I'heure actuelle, on ne sait pas caractériser les entiers n qui
peuvent s'écrire comme la somme de trois cubes d’entiers relatifs.
Voir par exemple la vidéo de Numberphile
https://www.youtube.com/watch?v=wymmCdLdPvM.
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https://www.youtube.com/watch?v=wymmCdLdPvM

Plusieurs questions naturelles peuvent alors se poser.

Q1 Etant donnée une telle équation, en existe-t-il au moins une
solution (x, - . ., x,) dans Q"1 ou dans Z"*1? En cas
d’existence de solution(s), en existe-t-il un nombre fini ou bien
une infinité ?

Q2 Dans le cas ol une équation n'a pas de solutions rationnelles,
quelles sont les obstructions a I'existence de telle solutions?

Q3 Dans le cas on il en existe une infinité, que peut-on dire de
quantitatif ? (cf conjecture de Manin-Peyre)
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Q1 En 1900, Hilbert propose 23 problémes qu'il juge alors
important de résoudre durant le siécle a venir. Le 10éme
probléme de Hilbert pose la question de I'existence d'un

algorithme prenant en entrée un polyndme F € Z[x, .. ., x,]
et renvoyant "oui" si F admet une solution dans Z™!, "non"
sinon.

En 1970, Matiyasevitch prouve qu'il n'existe pas de tel
algorithme et résout alors ce probléme. La question est
toujours ouverte si on remplace Z par Q.

Il s'agit d'un domaine de recherche toujours actif.
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Q2 Les seuls complétés de Q sont R (pour la valeur absolue
usuelle) et les corps p-adiques Q, (pour |x|, := p~») p
premier). Comme Q est naturellement inclus dans chacun de
ces corps, il est clair que si une équation diophantienne admet
une solution dans Q"*1, alors elle admet au moins une solution
dans R et dans chaque Q,.

La réciproque est fausse en général (voir le contre-exemple de
Selmer 3x3 4 4y3 4 523 = 0 pour les solutions non nulles),
mais si une équation la satisfait on dit qu'elle vérifie le principe
de Hasse. C'est par exemple le cas des coniques (polynémes
homogeénes de degré 2) a coefficients rationnels (théoréme de
Hasse—Minkowski).

Dans le cas ou le principe de Hasse est vérifié, les seules
obstructions a I'existence de solutions rationnelles ou entiéres
proviennent des solutions réelles ou des solutions modulo p
premier.
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Point de vue géométrique

Rappelons que P"(Q) désigne le quotient de Q™1 \ {0} par la
relation d'équivalence

(X053 Xn) ~ (Y0, -y ¥n) <= IA € Q", (X05---,%n) = A(Y0s- -+, Yn)-

La classe de (xp, ..., Xpn) est notée [xo : ... : x,] et est appelée
point rationnel.

Si F € Z[xo, ..., xn] est un polynéme homogeéne, |'équation
F(xo,...,xn) = 0 définit alors une variété algébrique projective V¢
et ses solutions x € P"(Q) sont appelées points rationnels de V.
Dans ce cas, le probléme peut donc se reformuler comme |'étude de
I'existence de points rationnels sur certaines variétés algébriques
projectives.
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Statistiques arithmétiques

On se propose d'étudier le probléme de I'existence de solution de
facon quantitative en répondant 3 Q1 en moyenne. Afin de
mesurer la taille/compléxité d'un point y € P"(Q), on définit sa
hauteur par

H(y) = max(|yol, -, |yal),
ot (Yo,---,Yn) est un représentant de y dans Z" vérifiant
pged(yo, - -+, yn) = L.

Etant donnée une famille d’équations / de variétés

.7: = {Fy(X) = O}yEP"(Q)

avec Fy € Z[xg, ..., xx] homogénes, on peut alors considérer pour
B > 2 la quantité
N oY - H(y) < B
N(B; F) = #{y P 5 e PrQL R =0 }

’Question : comment se comporte N(B; F) quand B tend vers +o00?
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Considérons la famille de coniques

. 2 2 2
Co := {_VOXO T yix{ ty2x; = O}[yo:yl:yz]EPZ(Q)'

@ En 1990, Serre a obtenu via le grand crible la majoration

B3
(log B)3/2
ot C > 0 est une constante indépendante de B, prouvant alors
qu'asymptotiquement, 0% des coniques de cette famille
possédent une solution rationnelle.

@ Dans les années qui ont suivies, Guo et Hooley ont obtenu
indépendamment une minoration

N(B;Co) <C

B3
(log B)3/2
avec C’ > 0 une constante indépendante de B.

Ainsi, I'ordre de grandeur de N(B;Cp) est @.

N(B;Co) > C/
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La conjecture de Loughran-Smeets

En 2016, Loughran et Smeets ont généralisé les travaux de Serre
sur les coniques et ont majoré finement la quantité N(B; F) pour
une large classe de familles de variétés/d’'équations F. lls
obtiennent une majoration de la forme

Bn+1

N(B:; <Corrmrre
(B F) < Cliog Bya)

ol A(F) = 0 est un invariant dépendant de la géométrie de la
famille F, et oo C > 0 est une constante indépendante de B. lls
conjecturent alors qu'on a en fait, sous de bonnes hypothéses,

Bn+l

N(B; F) B-stoo CF(Iog B)A(W)

avec cr > 0 une constante.
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La conjecture de Loughran-Smeets

En 2022, Loughran, Rome et Sofos conjecturent en plus une
formule close pour la constante ¢x au moyen d'invariants
géométriques associés a la famille F. lls vérifient alors leur
conjecture dans le cas de la famille Cy et répondent a la question de
Serre (1990) en montrant que

£33
N(B:Co) oo 0 (log B)3/2

avec ¢g > 0 explicite sous forme d'un produit eulérien.
Le but de ma thése est d'accroitre le nombre de familles F pour
lesquelles on sait estimer N(B; F) afin de tester cette conjecture et

observer ce qu'il se passe quand on s'éloigne un peu du cadre de
Loughran-Smeets.
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Premier résultat

Théoreme 1 (Da Silva, 2025)

Si F:=(Fo, F1,F) € Z[yo, ..., yn]® avec les F; homogeénes,
irréductibles de méme degré d, et avec n "trés grand" devant d,
alors la conjecture de Loughran-Smeets est vérifiée par la famille de
coniques a coefficients polynomiaux

Cr = {Fo(y)xg + FL(y)x§ + Fa(y)x3 = 0}yepn(q)-

.

Outil principal : Méthode du cercle, repose sur |'égalité

1 . o
/ eZiWGF(yo,...,y,,)de _ 1si F(y07 cee ayn) =0
0 0 sinon,

que I'on peut alors sommer sur les (yo, ..., y,) € Z™1 vérifiant
pged(yo, - -+, ¥n) = 1 et max|y;| < B.
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Second résultat

Si L est un corps de nombre et si F € Z[s, t] est une forme
quadratique irréductible sur Q, on considére la famille

FLF = {Njo(x) = F(s,t) }(s,t)ez2
ou N /q désigne la norme de L et x désigne un élément de L.

Théoreme 2 (Da Silva, 2026 a venir)

Si le groupe de Galois de L est abélien d'ordre D, si L est
suffisamment sympathique (son anneau des entiers est principal), et
si N(B; F,r) > 0, alors 'ordre de grandeur de N(B; F r) est

% si F est irréductible sur L
logB)" D

2 c
% sinon.
(log B) B

Outils : théorie algébrique des nombres, géométrie des nombres
(comptage de points dans des réseaux), théorie analytique des
nombres (crible et formule de Perron). 13/14



Merci pour votre attention !

Dae
14 /14



