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Motivation

Online platforms, e-commerce, etc

Flexible Model:

Multiple Goals Incentives Limited data  S€duential

decisions
©]




Course Overview

1. Classic single-choice problems:
The classic prophet inequality, secretary problem, prophet secretary problem, etc

2. Data driven prophet inequalities:
How can limited amount of data be nearly as useful as full distributional knowledge

3. Combinatorial Prophet Inequalities
Many ideas for single choice problems, extend to combinatorial contexts such as k-
choice, Matching, hyper graph matching, and beyond

4. Online Combinatorial Auctions
General Model that ecompasses many online selection/allocation problems



3. Combinatorial Prophet
Inequalities
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Sequence of n agents with
independent valuations (for one copy)

k identical tickets
v1 ~ Fl,vz ~ Fz, ...,Un ~ FTL

We sell to at most k agents, we compare against the expectation of
the sum of the largest k valuations



Static price policy

SetapriceT >0
Exp. no. of sold items Prob. item is available

Recall the proof for k = 1:
Revenue / Aﬁty

E(ALG) =T - P(maxv; = T) + P(maxv; <T) z E(v; —T),
i=1

For k > 1, denote as N(T) the number of items sold, i.e., N(T) = |{i:v; = T}|.
Revenue =T - IE(N(T))
Utility = 2744 ]E((vi — T)+) - P(item available for i)

n

> P(N(T) < k) z E((v; = T),)
i=1



IE(OPT)=IE< Z vi>=k-T+IE< Z (vi—T)>Sk~T+[E<zn:(vi—T)+>

IEOPT IEOPT i=1

Then,
E(ALG) - E(N(T))-T+P(N(T) <k) -EQr,(v; —T),)

E(OPT) — k-T+EQXE,(v;—T),)

> min {E(Nk(T)) ,P(N(T) < k)}



If we set T such that IE(N(T)) =k —./2klogk
Then, a Chernoff bound implies that

P(N(T) = k) < 0 (%)

Therefore,
_(E(N(D)) |
min ,P(N(T) < k) ¢ = min
k k
The best possible guarantee with single price when —E(NR(T)) =

same bound)

With multiple priceswe canget 1 — 0 (\/_112)

k —./2klogk 1 logk
,1—0(7{) >1-0 p

P(N(T) < k) (asymptotically it’s the



Matching Prophet Inequality

@ \ Natural to think of price-based
ol algorithms



Matching Prophet Inequality

Independent edge weights come one
by one in an arbitrary fixed order

Select matching on the fly

Maximize expectation




Algorithm:

e = (u,w) arrives:
e buys u and w as long as
they are not sold yet and

Ve = Put Pw

ALG(p) resulting matching
OPT optimal matching
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Theorem. [Gravin and Wang, EC’19][Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO’22]
There is a vector of prices p € RY, s.t. for any arrival order,

E(ALG(p)) = } E (OPT)



E(ALG(p)) = revenue + utility

= IE( Z pu>+IE( Z (Ve —pu—pw))
uev(ALG(p)) e€ALG(p)

We want balanced prices:
“high enough” so we get good revenue, yet “low enough” so
buyers buy (and get good utility)



To lower bound E(ALG (p)), utility is the tricky part:

E < Z (ve = pu pw)) = Z E (’{eEALc;(p)} (Ve — Py — pw))

e€ALG(p) e€E

Recall that ALG(p) takes e = (u,w) iff

B * the two nodes are free, and
o’ ",
K .‘\ * Ve 2 Pyt Pw
) .
. ®:
".. o - R, = set of remaining vertices when e arrives
".. .“‘
Re

R, is independent of v,



Utility = z IE(I{u,wERe} Ve — pu — pw]+)

e=(u,w)€eE

= z P(u,w € R,) - E([ve — Py — Pwl+)

e=(u,w)€EE

A\

> P(wwev(ALem)) - z.m)

e=(u,v)EE

=IE< Z ze(p)>

uweV(ALG(p))



IE(ALG(p)) = revenue + utility

=]E< Z pu>+IE< Z (ve—pu—pw)>

u€ev(ALG(p)) e€ALG(p)

> IE( 2 pu>+IE< 2 Ze(p)>
u€ev(ALG(p)) e=(uw)uweV(ALG(p))

> g(ngil‘}{ZPu+ 2 Ze(p)}

ugx eEE(X)



To bound OPT, imagine that edges in OPT had to pay the prices

IE(OPT)=IE( Z Pu + Z (ve—pu—pw)>

U€eV(OPT) ee0PT
< 2pu+zE([ve — Dy — Pw 1+)
uev eeEk

1= Z 2 Z ze(p)

uev eek



E(OPT) < ) pu+ ) 2e(p)

uev eek

VS.

[E(ALG(I?)) = g(nglrvl{ z Pu T z zo(p)

(7175, e€E(X)



What if we set prices Pu =




We want prices

Pu = Z Ze(p)
eed(u)

Define the operator: 1, (p) = Zeeg(u) Zo(p)

Brouwer’s fixed-point theorem: if Y is a continuous mapping from
a compact and convex set into itself, then it has a fixed point.

Recall that  ze(p) = E([ve — pu — pw |+) €10, E(ve)]

= there are prices p = Y (p)



Can we compute p? Brouwer’s only guarantees existence.

Theorem. For ¢ > 0, we can compute p in polynomial time s.t.

(3+¢) E(ALG(p)) = E(OPT)

Umax

L. 1 .
Eopry Ve can compute p in time poly (m, n,—g,B), using

For € > 0, m edges, n nodes and a bound B >

poly (m, n,:lz , B) samples.



Sample:

Calculate “empirical” y:

(ve(s)) — b (p) = 2 [ve(S) — Py — pw]
€l eed(u) "
y J
Repeatfors =1, ...,S
) ~ Al/erage ~ ) For large S, 1/3 is good approx
Y = §Z§=1 'P(S) (concentration bound)
Find . ap
‘ p — l/)(p) convex



Ve,s
A

We want
, S | !
Pu = _z 2 [Ue(s) — Dy — pwl , forall u evVv
S +
s=1 eed(u)
convex QP

- Ay = (v =2
min 7 Ves | Ve,s Ve S Ye's'
e,s

s’ e'eS(u)Us(w)

S.t.
Yes = 0

1
Yes = (ve(S) a Ez Z ye’,s’)

s e'eS(uw)Us(w)

=




Hypergraph matching

A hypergraph is a pair (V,E), where E € 2V
The previous analysis can be extended to hypergraphs

Theorem. [Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO’22]

If |e] < d for all e € E, there is a vector of prices p € RY s.t. for any
arrival order,

1
E(ALG(p)) = 7271 E (OPT)



Taking z.(p) = ]E((ve — Duce pu)+)

1E(0PT)=1E< > oty <ve—2pu>>

u€ev(OPT) ee0PT ue€e

< Epu+zze(p)

uev e€EE

E(ALG(p)) = g{ngig{ z Py z ze(p)}

UeX e:enX=0

If Py = Yewuce Ze(D)
E(OPT) < (d+1)- ) z,(p) < (d+1) - E(ALG(p))

e€EE



More generally: Combinatqrjghauction




o) 2 Ghedd
o° items M
@ & buyers come in
adversarial order

@ mdeper.\dent parameter d
valuations

0
o V: ~ F Vs A — max v, B
@ E@ Viile—>lIR+ {(4) (BSA,|B|<d} i((B)




welfare of '@ * %
optimal > go
allocation

welfare of @ p]g - buyers maximize utility
ALG — Iti 5 | - Z |
(p) = resulting pgb max {UL(A) p]}

allocation 7



Theorem. There is a vector of prices p € RY s.t. for any arrival order,
(d+1)-E(ALG(p)) = E (OPT).

The bound (d + 1) is best possible.

Theorem. These prices can be computed in polynomial time (even for non-
constant d).



Tight instance
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Matching with vertex arrival

(vuw)w<u

~Fu

Step: new vertex arrives, together with
adjacent edges connected to previous
vertices

Weights are independent across steps
(but might be correlated within a step)

Select matching on the fly
Maximize expectation

[Ezra, Feldman, Gravin, Tang, EC 2020]



In each step: should we match u now? to which vertex? We don’t know
if there will be better edges later.

ldea: “sample” OPT

Sample fresh weights for all other edges

(Ve e (w<u)
Let

be the optimal solution with these
weights.

(Vyw ) w<u ALG: try to match u according to OPT"



Imagine at every vertex u we succeeded with probability 3,
independently of (v,,,)w<y, and OPTY. Then,

E(ALG) = z p-E (Z Vuw ° 1{uWEOPTu}>

u w<u

_ z B-E (Z Vyw * 1{uw€0PT}>

w<u

M( Y )

uweoPT
= B - E(OPT)



Issue: some edges can be in OPT very often, but carry very little value
100
—, W.p. &
0\1/ - p
0, w.p.1l-—c¢

Solution: downplay the decision of OPT" a bit. When u arrives and we want to match
it to w, we toss an independent coin with bias «a,, (1)

1

Let x,,, = P(uw € OPT). We take a,, (1) = 2.(1_3.2 " )
9 LzZ<u Wz

(thisisin [0,1]... Why?)

This guarantees that we always succeed w.p. at least 1/2,so E(ALG) = E(OPT)



1
1
2'(1_2'Zz<u xwz)

We prove inductively that P(uw € ALG) = x%"

We take a,, (1) =

Assume it’s true for all edges (wz), with w,z < u.

P(uw € ALG)
= P(w is free when u arrives) - P(uw € OPT") - a, (1)

—(1— Xwz . . 1
zZ<U 2 - (1 - é | Zz<u xwz)

xuw

2



We repeat the argument to conclude:

Upon the arrival of u, imagine (uw) € OPT". What is the probability
we select it?

P(w is free when u arrives) - a,, (1)
Xz 1

1

=1— .
z<u 2 2 - (1 T2 Zz<u xwz)

N =/



Summary

. . . 1
* Best possible Pl for selecting k items gets 1 — O (ﬁ) [Alaei FOCS 2011]
- For fixed threshold is degradesto 1 — O ( /m—ik> [Chawla, Devanur, Lykouris WINE 2021]
- For prophet secretary best possible fixed threshold givesa1l — O (ﬁ) [Arnosti, Ma EC 2022]

* Best possible prices for online d -hypergraph matching (or combinatorial auctions with random valuation
parametrized by d).

- 1/3 for bipartite matching [Gravin and Wang, EC'19]

- Best possible factoris (1/(d + 1) | [C., Cristi, Fielbaum, Pollner, Weinberg, IPCO 2022]
- Improves upong (4d — 2) [Dutting, Feldman, Kesselheim, Lucier, FOCS’20]
—> For matching (d = 2) a 2.96-approx. is possible using adaptive prices [Ezra, Feldman, Gravin, Tang, EC 2020]

* For matching with vertex arrivals % is best possible [Ezra, Feldman, Gravin, Tang, EC 2020]



