Beyond Gaussian graphical models

Topic. Statistics.

Candidate. You have a PhD in statistics and want to work on a challenging problem in statistics motivated by real world applications.

Description. Although Gaussian graphical models [2,3] are routinely used to decipher complex relationships between genes in biology, new datasets produced by modern biotechnologies often contain mixed-type data which can no longer assumed to be Gaussian. To address this problem one promising approach assumes that the observed mixed-type data are nonlinear functions of a hidden, unobserved, sample of Gaussian vectors, and sets out with the aim to discover the graphical structure encoded by this Gaussian vector [1,4,5]. However, one can show that the graphical structure of the observed variables does not coincide with the one of the hidden Gaussian vector. The aim of the postdoc is to design a method able to infer the graphical structure of the observed variables. Depending on your interests, you will have the opportunity to work on the theoretical aspects of the method and/or its application to real datasets in genomics produced by biologists at INRAE. The postdoc will be located at INRAE, MaIAGE, 78350, Jouy-en-Josas, France.

Contact. Gildas Mazo; email: gildas.mazo@inrae.fr; ResearchGate / Google scholar / HAL: "Gildas Mazo".

References

- [1] Jianqing Fan, Han Liu, Yang Ning, and Hui Zou. High Dimensional Semiparametric Latent Graphical Model for Mixed Data. *Journal of the Royal* Statistical Society Series B: Statistical Methodology, 79(2):405–421, March 2017.
- [2] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441, July 2008.
- [3] Steffen L Lauritzen. Graphical models, volume 17. Clarendon Press, 1996.
- [4] Gildas Mazo, Dimitris Karlis, and Andrea Rau. A randomized pairwise likelihood method for complex statistical inferences. *Journal of the American Statistical Association*, 119(547):2317–2327, 2023.
- [5] Ekaterina Tomilina, Gildas Mazo, and Florence Jaffrézic. Multi-omics network inference with a Gaussian copula model. working paper or preprint, July 2025.